一种基于核k均值聚类算法的模糊分类器构造方法

Aimin Yang, Qing Li, Xing-guang Li
{"title":"一种基于核k均值聚类算法的模糊分类器构造方法","authors":"Aimin Yang, Qing Li, Xing-guang Li","doi":"10.1109/KAM.2009.5","DOIUrl":null,"url":null,"abstract":"A constructing method of fuzzy classifier using kernel k-means clustering algorithm is introduced in this paper. This constructing method are divided into three phases, namely clustering phase, fuzzy rule created phanse and parameters modified phase. firstly, the original sample space is mapped into a high dimensional feature space by selecting appropriate kernel function. In the feature space, training samples are grouped into some clusters by kernel k means clustering algorithm. Then for each created cluster, a fuzzy rule is defined with the appropriate membership function. Finally, Some parameters of fuzzy classifier are chosen by GAs. The experiment results show the proposed fuzzy classifier has very high classification accuracy by the comparison results with the similar approach, and has the better applied values.","PeriodicalId":192986,"journal":{"name":"2009 Second International Symposium on Knowledge Acquisition and Modeling","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Constructing Method of Fuzzy Classifier Using Kernel K-Means Clustering Algorithm\",\"authors\":\"Aimin Yang, Qing Li, Xing-guang Li\",\"doi\":\"10.1109/KAM.2009.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A constructing method of fuzzy classifier using kernel k-means clustering algorithm is introduced in this paper. This constructing method are divided into three phases, namely clustering phase, fuzzy rule created phanse and parameters modified phase. firstly, the original sample space is mapped into a high dimensional feature space by selecting appropriate kernel function. In the feature space, training samples are grouped into some clusters by kernel k means clustering algorithm. Then for each created cluster, a fuzzy rule is defined with the appropriate membership function. Finally, Some parameters of fuzzy classifier are chosen by GAs. The experiment results show the proposed fuzzy classifier has very high classification accuracy by the comparison results with the similar approach, and has the better applied values.\",\"PeriodicalId\":192986,\"journal\":{\"name\":\"2009 Second International Symposium on Knowledge Acquisition and Modeling\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Symposium on Knowledge Acquisition and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KAM.2009.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Symposium on Knowledge Acquisition and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAM.2009.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种利用核k均值聚类算法构造模糊分类器的方法。该方法分为三个阶段,即聚类阶段、模糊规则生成阶段和参数修改阶段。首先,通过选择合适的核函数,将原始样本空间映射到高维特征空间;在特征空间中,通过核k均值聚类算法将训练样本分成若干类。然后,对每个已创建的聚类定义具有适当隶属函数的模糊规则。最后,利用遗传算法选择模糊分类器的参数。实验结果表明,本文提出的模糊分类器与同类方法的分类准确率较高,具有较好的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Constructing Method of Fuzzy Classifier Using Kernel K-Means Clustering Algorithm
A constructing method of fuzzy classifier using kernel k-means clustering algorithm is introduced in this paper. This constructing method are divided into three phases, namely clustering phase, fuzzy rule created phanse and parameters modified phase. firstly, the original sample space is mapped into a high dimensional feature space by selecting appropriate kernel function. In the feature space, training samples are grouped into some clusters by kernel k means clustering algorithm. Then for each created cluster, a fuzzy rule is defined with the appropriate membership function. Finally, Some parameters of fuzzy classifier are chosen by GAs. The experiment results show the proposed fuzzy classifier has very high classification accuracy by the comparison results with the similar approach, and has the better applied values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduction Methods of Attributes Based on Improved BPSO A Novel Program Analysis Method Based on Execution Path Correlation A New Repeat Family Detection Method Based on Sparse de Bruijn Graph Extracting Event Temporal Information Based on Web Application of Ant Colony Algorithm in Discrete Job-Shop Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1