作为选择性热焊接参考的锡膏沉积的能量分析

D. Seehase, H. Huth, F. Bremerkamp, M. Nowottnick
{"title":"作为选择性热焊接参考的锡膏沉积的能量分析","authors":"D. Seehase, H. Huth, F. Bremerkamp, M. Nowottnick","doi":"10.1109/ISSE.2012.6273103","DOIUrl":null,"url":null,"abstract":"Strictly speaking standard reflow soldering processes are inefficient in terms of energy consumption. A large amount of energy is needed to heat up comparatively small solder joints. As a result the whole electronic assembly is stressed with heat, of which only a fraction is going into soldering. A reduction of process temperatures would improve this disproportion. To compensate for the resulting lack of energy, an exothermic reaction, releasing additional heat inside the solder paste deposits, could be applied. The potential of such a process has already been proven in earlier works [1], [5]. For the adjustment of such a sensitive process a better understanding of the energetic requirements for solder paste deposits in dependence of their size and temperature is required. In this work such results are generated by a practical measuring approach. Here, a chip resistor is used as a model to melt up particular solder joints through joule heating. The thermal energy is calculated by measuring electrical power over time.","PeriodicalId":277579,"journal":{"name":"2012 35th International Spring Seminar on Electronics Technology","volume":"715 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Energetic analysis of solder paste deposits as reference for soldering with selective heat\",\"authors\":\"D. Seehase, H. Huth, F. Bremerkamp, M. Nowottnick\",\"doi\":\"10.1109/ISSE.2012.6273103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strictly speaking standard reflow soldering processes are inefficient in terms of energy consumption. A large amount of energy is needed to heat up comparatively small solder joints. As a result the whole electronic assembly is stressed with heat, of which only a fraction is going into soldering. A reduction of process temperatures would improve this disproportion. To compensate for the resulting lack of energy, an exothermic reaction, releasing additional heat inside the solder paste deposits, could be applied. The potential of such a process has already been proven in earlier works [1], [5]. For the adjustment of such a sensitive process a better understanding of the energetic requirements for solder paste deposits in dependence of their size and temperature is required. In this work such results are generated by a practical measuring approach. Here, a chip resistor is used as a model to melt up particular solder joints through joule heating. The thermal energy is calculated by measuring electrical power over time.\",\"PeriodicalId\":277579,\"journal\":{\"name\":\"2012 35th International Spring Seminar on Electronics Technology\",\"volume\":\"715 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 35th International Spring Seminar on Electronics Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSE.2012.6273103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 35th International Spring Seminar on Electronics Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSE.2012.6273103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

严格来说,标准回流焊工艺在能源消耗方面是低效的。加热相对较小的焊点需要大量的能量。因此,整个电子组件受到热量的压力,其中只有一小部分用于焊接。降低工艺温度可以改善这种不平衡。为了弥补由此产生的能量不足,可以应用放热反应,在锡膏沉积物中释放额外的热量。这种过程的潜力已经在早期的工作中得到了证明[1],[5]。为了调整这样一个敏感的过程,需要更好地了解锡膏沉积物的能量要求,这取决于它们的尺寸和温度。在这项工作中,这样的结果是由一个实际的测量方法产生的。在这里,一个芯片电阻被用作一个模型,通过焦耳加热融化特定的焊点。热能是通过测量电能随时间的变化来计算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energetic analysis of solder paste deposits as reference for soldering with selective heat
Strictly speaking standard reflow soldering processes are inefficient in terms of energy consumption. A large amount of energy is needed to heat up comparatively small solder joints. As a result the whole electronic assembly is stressed with heat, of which only a fraction is going into soldering. A reduction of process temperatures would improve this disproportion. To compensate for the resulting lack of energy, an exothermic reaction, releasing additional heat inside the solder paste deposits, could be applied. The potential of such a process has already been proven in earlier works [1], [5]. For the adjustment of such a sensitive process a better understanding of the energetic requirements for solder paste deposits in dependence of their size and temperature is required. In this work such results are generated by a practical measuring approach. Here, a chip resistor is used as a model to melt up particular solder joints through joule heating. The thermal energy is calculated by measuring electrical power over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Examination of the signal recorded by micro sensor system for detecting damages on rail vehicle undercarriage Evaluation of soldering processes for high efficiency solar cells Day and night vision detectors - Design of antireflection coatings Study of the components self-alignment in surface mount technology Planar thick film frequency filter design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1