基于自适应进化算法的模糊电力系统稳定器设计

Gi-Hyun Hwang, Dong-Wan Kim, Jae-Hyun Lee, Young-Joo An
{"title":"基于自适应进化算法的模糊电力系统稳定器设计","authors":"Gi-Hyun Hwang, Dong-Wan Kim, Jae-Hyun Lee, Young-Joo An","doi":"10.1109/ISIE.2000.930483","DOIUrl":null,"url":null,"abstract":"This paper presents a design methodology of fuzzy system stabilizer (FPSS) using an adaptive evolution algorithm (AEA). The AEA consists of a genetic algorithm for a global search and evolution strategy for a local search in an adaptive manner when the present generation evolves into the next generation. The AEA is used to optimize the membership functions and scaling factors of FPSS. A single machine infinite system is applied to evaluate the usefulness of the FPSS. The results show that the proposed FPSS has a better control performance than the conventional power system stabilizer (CPSS) in the case of a three-phase fault under heavy load. To show the robustness of FPSS, it is applied to the system with disturbances such as change of mechanical torque and three-phase fault under the normal and light load. The results of the FPSS show a better robustness than that of the CPSS.","PeriodicalId":298625,"journal":{"name":"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)","volume":"710 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Design of fuzzy power system stabilizer using adaptive evolutionary algorithm\",\"authors\":\"Gi-Hyun Hwang, Dong-Wan Kim, Jae-Hyun Lee, Young-Joo An\",\"doi\":\"10.1109/ISIE.2000.930483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a design methodology of fuzzy system stabilizer (FPSS) using an adaptive evolution algorithm (AEA). The AEA consists of a genetic algorithm for a global search and evolution strategy for a local search in an adaptive manner when the present generation evolves into the next generation. The AEA is used to optimize the membership functions and scaling factors of FPSS. A single machine infinite system is applied to evaluate the usefulness of the FPSS. The results show that the proposed FPSS has a better control performance than the conventional power system stabilizer (CPSS) in the case of a three-phase fault under heavy load. To show the robustness of FPSS, it is applied to the system with disturbances such as change of mechanical torque and three-phase fault under the normal and light load. The results of the FPSS show a better robustness than that of the CPSS.\",\"PeriodicalId\":298625,\"journal\":{\"name\":\"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)\",\"volume\":\"710 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2000.930483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2000.930483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

提出了一种基于自适应进化算法的模糊系统稳定器设计方法。该算法由全局搜索的遗传算法和自适应进化到下一代的局部搜索的进化策略组成。利用AEA对FPSS的隶属函数和标度因子进行优化。用单机无限系统来评价FPSS的有效性。结果表明,在大负荷三相故障情况下,与传统的电力系统稳定器(CPSS)相比,所提出的FPSS具有更好的控制性能。为了证明FPSS的鲁棒性,将其应用于正常负载和轻负载下具有机械转矩变化和三相故障等扰动的系统。结果表明,FPSS比CPSS具有更好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of fuzzy power system stabilizer using adaptive evolutionary algorithm
This paper presents a design methodology of fuzzy system stabilizer (FPSS) using an adaptive evolution algorithm (AEA). The AEA consists of a genetic algorithm for a global search and evolution strategy for a local search in an adaptive manner when the present generation evolves into the next generation. The AEA is used to optimize the membership functions and scaling factors of FPSS. A single machine infinite system is applied to evaluate the usefulness of the FPSS. The results show that the proposed FPSS has a better control performance than the conventional power system stabilizer (CPSS) in the case of a three-phase fault under heavy load. To show the robustness of FPSS, it is applied to the system with disturbances such as change of mechanical torque and three-phase fault under the normal and light load. The results of the FPSS show a better robustness than that of the CPSS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Engineering of distributed control systems Modeling conducted EMI noise generation and propagation in boost converters Application of hybrid power systems of low power to the remote radio equipment telecommunication Identification of nonlinear systems based on the bispectrum and a second order Volterra model A fuzzy logic feed-forward current controller for PWM rectifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1