天体物理学中大型成像问题的分布式学习架构

A. Panousopoulou, S. Farrens, Yiannis Mastorakis, Jean-Luc Starck, P. Tsakalides
{"title":"天体物理学中大型成像问题的分布式学习架构","authors":"A. Panousopoulou, S. Farrens, Yiannis Mastorakis, Jean-Luc Starck, P. Tsakalides","doi":"10.23919/EUSIPCO.2017.8081447","DOIUrl":null,"url":null,"abstract":"Future challenges in Big Imaging problems will require that traditional, \"black-box\" machine learning methods, be revisited from the perspective of ongoing efforts in distributed computing. This paper proposes a distributed architecture for astrophysical imagery, which exploits the Apache Spark framework for the efficient parallelization of the learning problem at hand. The use case is related to the challenging problem of deconvolving a space variant point spread function from noisy galaxy images. We conduct benchmark studies considering relevant datasets and analyze the efficacy of the herein developed parallelization approaches. The experimental results report 58% improvement in time response terms against the conventional computing solutions, while useful insights into the computational trade-offs and the limitations of Spark are extracted.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A distributed learning architecture for big imaging problems in astrophysics\",\"authors\":\"A. Panousopoulou, S. Farrens, Yiannis Mastorakis, Jean-Luc Starck, P. Tsakalides\",\"doi\":\"10.23919/EUSIPCO.2017.8081447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future challenges in Big Imaging problems will require that traditional, \\\"black-box\\\" machine learning methods, be revisited from the perspective of ongoing efforts in distributed computing. This paper proposes a distributed architecture for astrophysical imagery, which exploits the Apache Spark framework for the efficient parallelization of the learning problem at hand. The use case is related to the challenging problem of deconvolving a space variant point spread function from noisy galaxy images. We conduct benchmark studies considering relevant datasets and analyze the efficacy of the herein developed parallelization approaches. The experimental results report 58% improvement in time response terms against the conventional computing solutions, while useful insights into the computational trade-offs and the limitations of Spark are extracted.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大成像问题的未来挑战将需要从分布式计算的角度重新审视传统的“黑箱”机器学习方法。本文提出了一种天体物理图像的分布式架构,该架构利用Apache Spark框架对手头的学习问题进行高效并行化。该用例涉及到从有噪声的星系图像中解卷积空间变点扩展函数的挑战性问题。考虑相关数据集,我们进行了基准研究,并分析了本文开发的并行化方法的有效性。实验结果表明,与传统计算解决方案相比,时间响应项提高了58%,同时提取了对计算权衡和Spark局限性的有用见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A distributed learning architecture for big imaging problems in astrophysics
Future challenges in Big Imaging problems will require that traditional, "black-box" machine learning methods, be revisited from the perspective of ongoing efforts in distributed computing. This paper proposes a distributed architecture for astrophysical imagery, which exploits the Apache Spark framework for the efficient parallelization of the learning problem at hand. The use case is related to the challenging problem of deconvolving a space variant point spread function from noisy galaxy images. We conduct benchmark studies considering relevant datasets and analyze the efficacy of the herein developed parallelization approaches. The experimental results report 58% improvement in time response terms against the conventional computing solutions, while useful insights into the computational trade-offs and the limitations of Spark are extracted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring using a perturbation-basec regularization approach Distributed computational load balancing for real-time applications Nonconvulsive epileptic seizures detection using multiway data analysis Performance improvement for wideband beamforming with white noise reduction based on sparse arrays Wideband DoA estimation based on joint optimisation of array and spatial sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1