神经电磁成像MRI内容自适应FE头部模型的网格质量分析

W.H. Lee, T. Kim, Y.H. Kim, S.Y. Lee
{"title":"神经电磁成像MRI内容自适应FE头部模型的网格质量分析","authors":"W.H. Lee, T. Kim, Y.H. Kim, S.Y. Lee","doi":"10.1109/CNE.2007.369658","DOIUrl":null,"url":null,"abstract":"Realistic finite element (FE) head models for neuro-electromagnetic imaging are getting more attention due to their analytic advantages over conventional models. To improve the numerical efficiency, we have previously developed a novel mesh generation scheme that produces FE head models automatically that are content-adaptive to given MR images. MRI content-adaptive FE meshes (cMeshes) represent the electrically conducting domain more effectively with less number of nodes and elements, thus lessen the computational loads. In general, the cMesh generation is affected by the selection of feature maps derived from MRI. In this study, we have tested the effects of various feature maps on the generation of cMesh FE head models. Also we have evaluated the quality of cMesh FE head models to check their suitability for neuro-electromagnetic imaging using EEG and MEG. The results suggest that the cMesh FE head models with properly selected feature maps do show acceptable quality to be used in neuro-electromagnetic imaging.","PeriodicalId":427054,"journal":{"name":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mesh Quality Analysis of MRI Content-adaptive FE Head Models for Neuro-Electromagnetic Imaging\",\"authors\":\"W.H. Lee, T. Kim, Y.H. Kim, S.Y. Lee\",\"doi\":\"10.1109/CNE.2007.369658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Realistic finite element (FE) head models for neuro-electromagnetic imaging are getting more attention due to their analytic advantages over conventional models. To improve the numerical efficiency, we have previously developed a novel mesh generation scheme that produces FE head models automatically that are content-adaptive to given MR images. MRI content-adaptive FE meshes (cMeshes) represent the electrically conducting domain more effectively with less number of nodes and elements, thus lessen the computational loads. In general, the cMesh generation is affected by the selection of feature maps derived from MRI. In this study, we have tested the effects of various feature maps on the generation of cMesh FE head models. Also we have evaluated the quality of cMesh FE head models to check their suitability for neuro-electromagnetic imaging using EEG and MEG. The results suggest that the cMesh FE head models with properly selected feature maps do show acceptable quality to be used in neuro-electromagnetic imaging.\",\"PeriodicalId\":427054,\"journal\":{\"name\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNE.2007.369658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2007.369658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现实的有限元头部神经电磁成像模型由于其相对于传统模型的分析优势而受到越来越多的关注。为了提高数值效率,我们之前开发了一种新的网格生成方案,该方案自动生成FE头部模型,该模型对给定的MR图像具有内容自适应。MRI内容自适应有限元网格(cMeshes)以较少的节点和元素更有效地表示导电区域,从而减少了计算量。一般来说,cMesh的生成会受到来自MRI的特征映射的选择的影响。在本研究中,我们测试了各种特征映射对cMesh FE头部模型生成的影响。此外,我们还评估了cMesh FE头部模型的质量,以检查其是否适合使用脑电图和脑磁图进行神经电磁成像。结果表明,适当选择特征图的cMesh FE头部模型确实显示出可接受的质量,可用于神经电磁成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mesh Quality Analysis of MRI Content-adaptive FE Head Models for Neuro-Electromagnetic Imaging
Realistic finite element (FE) head models for neuro-electromagnetic imaging are getting more attention due to their analytic advantages over conventional models. To improve the numerical efficiency, we have previously developed a novel mesh generation scheme that produces FE head models automatically that are content-adaptive to given MR images. MRI content-adaptive FE meshes (cMeshes) represent the electrically conducting domain more effectively with less number of nodes and elements, thus lessen the computational loads. In general, the cMesh generation is affected by the selection of feature maps derived from MRI. In this study, we have tested the effects of various feature maps on the generation of cMesh FE head models. Also we have evaluated the quality of cMesh FE head models to check their suitability for neuro-electromagnetic imaging using EEG and MEG. The results suggest that the cMesh FE head models with properly selected feature maps do show acceptable quality to be used in neuro-electromagnetic imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Site-selective Electrical Recording from Small Neuronal Circuits using Spray Patterning Method and Mobile Microelectrodes Use of Intracortical Recordings to Control a Hand Neuroprosthesis A System for Single-trial Analysis of Simultaneously Acquired EEG and fMRI Evaluation of approximate stochastic Hodgkin-Huxley models Iterative Full Head Finite Element Model for Deep Brain Stimulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1