基于PCNN模型的图像分割

Zhongyu Tao, Xiaolong Tang, Binyu Zhang, Panshi Tang, Yu Tan
{"title":"基于PCNN模型的图像分割","authors":"Zhongyu Tao, Xiaolong Tang, Binyu Zhang, Panshi Tang, Yu Tan","doi":"10.1109/ICCWAMTIP.2014.7073397","DOIUrl":null,"url":null,"abstract":"Image segmentation is very important in image processing which can segment the images into the different parts, thus, we can focus on the parts in which we are interested. Recent years, there are many models using for the image segmentation, Pulse Coupled Neural Networks model is very popular model which is widely used among many models. Although, PCNN models needs trivial adaptive parameters and network iterations to set, but it has the advantages, such as rotation invariance, intensity invariance, scale invariance, etc. Above advantages make PCNN is very suitable for image segmentation.","PeriodicalId":211273,"journal":{"name":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Image segmentation based on PCNN model\",\"authors\":\"Zhongyu Tao, Xiaolong Tang, Binyu Zhang, Panshi Tang, Yu Tan\",\"doi\":\"10.1109/ICCWAMTIP.2014.7073397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is very important in image processing which can segment the images into the different parts, thus, we can focus on the parts in which we are interested. Recent years, there are many models using for the image segmentation, Pulse Coupled Neural Networks model is very popular model which is widely used among many models. Although, PCNN models needs trivial adaptive parameters and network iterations to set, but it has the advantages, such as rotation invariance, intensity invariance, scale invariance, etc. Above advantages make PCNN is very suitable for image segmentation.\",\"PeriodicalId\":211273,\"journal\":{\"name\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP.2014.7073397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2014.7073397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像分割是图像处理中非常重要的一项技术,它可以将图像分割成不同的部分,从而使我们能够专注于我们感兴趣的部分。近年来,用于图像分割的模型有很多,脉冲耦合神经网络模型是非常流行的模型,在众多模型中得到了广泛的应用。虽然PCNN模型需要繁琐的自适应参数和网络迭代来设置,但它具有旋转不变性、强度不变性、尺度不变性等优点。以上优点使得PCNN非常适合用于图像分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image segmentation based on PCNN model
Image segmentation is very important in image processing which can segment the images into the different parts, thus, we can focus on the parts in which we are interested. Recent years, there are many models using for the image segmentation, Pulse Coupled Neural Networks model is very popular model which is widely used among many models. Although, PCNN models needs trivial adaptive parameters and network iterations to set, but it has the advantages, such as rotation invariance, intensity invariance, scale invariance, etc. Above advantages make PCNN is very suitable for image segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Monte Carlo calculation method of multiple integration A group attack detecter for collaborative filtering recommendation A real-time stream system based on node.js A CP-ABE scheme with system attributes revocation in cloud storage Application of wavelet transform in laser detection of underwater acoustic signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1