ParallelMOT:更注重跟踪

Changzhi Lv, Changdong Shu, Yingjun Lv, Chunsheng Song
{"title":"ParallelMOT:更注重跟踪","authors":"Changzhi Lv, Changdong Shu, Yingjun Lv, Chunsheng Song","doi":"10.1109/CSAIEE54046.2021.9543153","DOIUrl":null,"url":null,"abstract":"Modern multiple object tracking has made great progress of the JDE model. Because the JDE model uses a shared model, its calculation speed and accuracy have been greatly improved. But using the same network to predict detection and re- ID will affect each other when the network feedback, thereby reducing the MOTA (Evaluation Measures for MOTChallenge) accuracy, and when the network detects the object and ID information separately, it will greatly increase the computing time. We propose a new MOT method named ParallelMOT, which uses two different branches to reduce the mutual influence of network feedback, and uses object information fusion to improve the feature extraction of the object, and uses a new network model to predict embedding for achieving better MOT accuracy.","PeriodicalId":376014,"journal":{"name":"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ParallelMOT: Pay More Attention in Tracking\",\"authors\":\"Changzhi Lv, Changdong Shu, Yingjun Lv, Chunsheng Song\",\"doi\":\"10.1109/CSAIEE54046.2021.9543153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern multiple object tracking has made great progress of the JDE model. Because the JDE model uses a shared model, its calculation speed and accuracy have been greatly improved. But using the same network to predict detection and re- ID will affect each other when the network feedback, thereby reducing the MOTA (Evaluation Measures for MOTChallenge) accuracy, and when the network detects the object and ID information separately, it will greatly increase the computing time. We propose a new MOT method named ParallelMOT, which uses two different branches to reduce the mutual influence of network feedback, and uses object information fusion to improve the feature extraction of the object, and uses a new network model to predict embedding for achieving better MOT accuracy.\",\"PeriodicalId\":376014,\"journal\":{\"name\":\"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSAIEE54046.2021.9543153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAIEE54046.2021.9543153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现代多目标跟踪在JDE模型上取得了很大的进步。由于JDE模型使用了共享模型,其计算速度和精度都得到了很大的提高。但使用同一网络进行预测检测和重识别时,网络反馈会相互影响,从而降低MOTA (Evaluation Measures for MOTChallenge)的精度,并且当网络分别检测对象和ID信息时,会大大增加计算时间。我们提出了一种新的MOT方法——并行MOT,该方法使用两个不同的分支来减少网络反馈的相互影响,使用目标信息融合来改进目标的特征提取,并使用新的网络模型来预测嵌入以获得更好的MOT精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ParallelMOT: Pay More Attention in Tracking
Modern multiple object tracking has made great progress of the JDE model. Because the JDE model uses a shared model, its calculation speed and accuracy have been greatly improved. But using the same network to predict detection and re- ID will affect each other when the network feedback, thereby reducing the MOTA (Evaluation Measures for MOTChallenge) accuracy, and when the network detects the object and ID information separately, it will greatly increase the computing time. We propose a new MOT method named ParallelMOT, which uses two different branches to reduce the mutual influence of network feedback, and uses object information fusion to improve the feature extraction of the object, and uses a new network model to predict embedding for achieving better MOT accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Res-Attention Net: An Image Dehazing Network Teacher-Student Network for Low-quality Remote Sensing Ship Detection Optimization of GNSS Signals Acquisition Algorithm Complexity Using Comb Decimation Filter Basic Ensemble Learning of Encoder Representations from Transformer for Disaster-mentioning Tweets Classification Measuring Hilbert-Schmidt Independence Criterion with Different Kernels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1