{"title":"混合动力汽车动力仿真的通用电池模型","authors":"Olivier Tremblay, L. Dessaint, A. Dekkiche","doi":"10.1109/VPPC.2007.4544139","DOIUrl":null,"url":null,"abstract":"This paper presents an easy-to-use battery model applied to dynamic simulation software. The simulation model uses only the battery State-Of-Charge (SOC) as a state variable in order to avoid the algebraic loop problem. It is shown that this model, composed of a controlled voltage source in series with a resistance, can accurately represent four types of battery chemistries. The model's parameters can easily be extracted from the manufacturer's discharge curve, which allows for an easy use of the model. A method is described to extract the model's parameters and to approximate the internal resistance. The model is validated by superimposing the results with the manufacturer's discharge curves. Finally, the battery model is included in the SimPowerSystems (SPS) simulation software and is used in the Hybrid Electric Vehicle (HEV) demo. The results for the battery and for the DC-DC converter are analysed and they show that the model can accurately represent the general behaviour of the battery.","PeriodicalId":345424,"journal":{"name":"2007 IEEE Vehicle Power and Propulsion Conference","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1114","resultStr":"{\"title\":\"A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles\",\"authors\":\"Olivier Tremblay, L. Dessaint, A. Dekkiche\",\"doi\":\"10.1109/VPPC.2007.4544139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an easy-to-use battery model applied to dynamic simulation software. The simulation model uses only the battery State-Of-Charge (SOC) as a state variable in order to avoid the algebraic loop problem. It is shown that this model, composed of a controlled voltage source in series with a resistance, can accurately represent four types of battery chemistries. The model's parameters can easily be extracted from the manufacturer's discharge curve, which allows for an easy use of the model. A method is described to extract the model's parameters and to approximate the internal resistance. The model is validated by superimposing the results with the manufacturer's discharge curves. Finally, the battery model is included in the SimPowerSystems (SPS) simulation software and is used in the Hybrid Electric Vehicle (HEV) demo. The results for the battery and for the DC-DC converter are analysed and they show that the model can accurately represent the general behaviour of the battery.\",\"PeriodicalId\":345424,\"journal\":{\"name\":\"2007 IEEE Vehicle Power and Propulsion Conference\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1114\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Vehicle Power and Propulsion Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VPPC.2007.4544139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Vehicle Power and Propulsion Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2007.4544139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles
This paper presents an easy-to-use battery model applied to dynamic simulation software. The simulation model uses only the battery State-Of-Charge (SOC) as a state variable in order to avoid the algebraic loop problem. It is shown that this model, composed of a controlled voltage source in series with a resistance, can accurately represent four types of battery chemistries. The model's parameters can easily be extracted from the manufacturer's discharge curve, which allows for an easy use of the model. A method is described to extract the model's parameters and to approximate the internal resistance. The model is validated by superimposing the results with the manufacturer's discharge curves. Finally, the battery model is included in the SimPowerSystems (SPS) simulation software and is used in the Hybrid Electric Vehicle (HEV) demo. The results for the battery and for the DC-DC converter are analysed and they show that the model can accurately represent the general behaviour of the battery.