隐模糊马尔可夫随机场参数估计与图像分割

Fabien Salzenstein, Wojciech Pieczynski
{"title":"隐模糊马尔可夫随机场参数估计与图像分割","authors":"Fabien Salzenstein,&nbsp;Wojciech Pieczynski","doi":"10.1006/gmip.1997.0431","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a new unsupervised fuzzy Bayesian image segmentation method using a recent model using hidden fuzzy Markov fields. The originality of this model is to use Dirac and Lebesgue measures simultaneously at the class field level, which allows the coexistence of hard and fuzzy pixels in a same picture. We propose to solve the main problem of parameter estimation by using of a recent general method of estimation in the case of hidden data, called iterative conditional estimation (ICE), which has been successfully applied in classical segmentation based on hidden Markov fields. The first part of our work involves estimating the parameters defining the Markovian distribution of the noise-free fuzzy picture. We then combine this algorithm with the ICE method in order to estimate all the parameters of the fuzzy picture corrupted with noise. Last, we combine the parameter estimation step with two segmentation methods, resulting in two unsupervised statistical fuzzy segmentation methods. The efficiency of the proposed methods is tested numerically on synthetic images and a fuzzy segmentation of a real image of clouds is studied.</p></div>","PeriodicalId":100591,"journal":{"name":"Graphical Models and Image Processing","volume":"59 4","pages":"Pages 205-220"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/gmip.1997.0431","citationCount":"133","resultStr":"{\"title\":\"Parameter Estimation in Hidden Fuzzy Markov Random Fields and Image Segmentation\",\"authors\":\"Fabien Salzenstein,&nbsp;Wojciech Pieczynski\",\"doi\":\"10.1006/gmip.1997.0431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a new unsupervised fuzzy Bayesian image segmentation method using a recent model using hidden fuzzy Markov fields. The originality of this model is to use Dirac and Lebesgue measures simultaneously at the class field level, which allows the coexistence of hard and fuzzy pixels in a same picture. We propose to solve the main problem of parameter estimation by using of a recent general method of estimation in the case of hidden data, called iterative conditional estimation (ICE), which has been successfully applied in classical segmentation based on hidden Markov fields. The first part of our work involves estimating the parameters defining the Markovian distribution of the noise-free fuzzy picture. We then combine this algorithm with the ICE method in order to estimate all the parameters of the fuzzy picture corrupted with noise. Last, we combine the parameter estimation step with two segmentation methods, resulting in two unsupervised statistical fuzzy segmentation methods. The efficiency of the proposed methods is tested numerically on synthetic images and a fuzzy segmentation of a real image of clouds is studied.</p></div>\",\"PeriodicalId\":100591,\"journal\":{\"name\":\"Graphical Models and Image Processing\",\"volume\":\"59 4\",\"pages\":\"Pages 205-220\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/gmip.1997.0431\",\"citationCount\":\"133\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077316997904317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077316997904317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 133

摘要

本文提出了一种新的基于隐模糊马尔可夫域的无监督模糊贝叶斯图像分割方法。该模型的独创性在于在类场水平上同时使用狄拉克和勒贝格度量,从而允许在同一幅图像中同时存在硬像素和模糊像素。本文提出了一种新的通用估计方法,即迭代条件估计(ICE),该方法已成功地应用于基于隐马尔可夫域的经典分割中,以解决隐藏数据情况下参数估计的主要问题。我们的工作的第一部分涉及估计参数,定义无噪声模糊图像的马尔可夫分布。然后,我们将该算法与ICE方法相结合,以估计被噪声破坏的模糊图像的所有参数。最后,将参数估计步骤与两种分割方法相结合,得到两种无监督统计模糊分割方法。在合成图像上对所提方法的有效性进行了数值验证,并对真实云图的模糊分割进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter Estimation in Hidden Fuzzy Markov Random Fields and Image Segmentation

This paper proposes a new unsupervised fuzzy Bayesian image segmentation method using a recent model using hidden fuzzy Markov fields. The originality of this model is to use Dirac and Lebesgue measures simultaneously at the class field level, which allows the coexistence of hard and fuzzy pixels in a same picture. We propose to solve the main problem of parameter estimation by using of a recent general method of estimation in the case of hidden data, called iterative conditional estimation (ICE), which has been successfully applied in classical segmentation based on hidden Markov fields. The first part of our work involves estimating the parameters defining the Markovian distribution of the noise-free fuzzy picture. We then combine this algorithm with the ICE method in order to estimate all the parameters of the fuzzy picture corrupted with noise. Last, we combine the parameter estimation step with two segmentation methods, resulting in two unsupervised statistical fuzzy segmentation methods. The efficiency of the proposed methods is tested numerically on synthetic images and a fuzzy segmentation of a real image of clouds is studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ERRATUM Two-Dimensional Direction-Based Interpolation with Local Centered Moments On Computing Contact Configurations of a Curved Chain Unification of Distance and Volume Optimization in Surface Simplification REVIEWER ACKNOWLEDGMENT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1