Alessandra Farina, Alessandro Nicolosi, E. Bonizzoni
{"title":"基于全差分延迟线的谐振开关电容变换器控制","authors":"Alessandra Farina, Alessandro Nicolosi, E. Bonizzoni","doi":"10.1109/prime55000.2022.9816832","DOIUrl":null,"url":null,"abstract":"This paper presents a new control method to regulate the output current of a resonant switched-capacitor converter (ReSCC). Starting from a fixed switching frequency operation, the phase-shift required to regulate the average output current is modulated through a fully-differential control scheme composed by a fully-differential OTA, a differential compensation network and two identical voltage-controlled delay lines. The proposed method eliminates any restriction on the minimum achievable phase-shift, is suitable for integration in a scaled technology and for high-frequency operation. Moreover, it allows a seamless control between output current sourcing and sinking capabilities, extending the load current range, and improving the response to load transients. A circuit design has been performed on a 110-nm BCD technology, with 3.7 V to 1.8 V voltage conversion, 60 mA of output current and 10 MHz operation. Simulations demonstrate the effectiveness of the proposed method.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fully-Differential Delay-Line Based Control for Resonant Switched-Capacitor Converter\",\"authors\":\"Alessandra Farina, Alessandro Nicolosi, E. Bonizzoni\",\"doi\":\"10.1109/prime55000.2022.9816832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new control method to regulate the output current of a resonant switched-capacitor converter (ReSCC). Starting from a fixed switching frequency operation, the phase-shift required to regulate the average output current is modulated through a fully-differential control scheme composed by a fully-differential OTA, a differential compensation network and two identical voltage-controlled delay lines. The proposed method eliminates any restriction on the minimum achievable phase-shift, is suitable for integration in a scaled technology and for high-frequency operation. Moreover, it allows a seamless control between output current sourcing and sinking capabilities, extending the load current range, and improving the response to load transients. A circuit design has been performed on a 110-nm BCD technology, with 3.7 V to 1.8 V voltage conversion, 60 mA of output current and 10 MHz operation. Simulations demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":142196,\"journal\":{\"name\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prime55000.2022.9816832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Fully-Differential Delay-Line Based Control for Resonant Switched-Capacitor Converter
This paper presents a new control method to regulate the output current of a resonant switched-capacitor converter (ReSCC). Starting from a fixed switching frequency operation, the phase-shift required to regulate the average output current is modulated through a fully-differential control scheme composed by a fully-differential OTA, a differential compensation network and two identical voltage-controlled delay lines. The proposed method eliminates any restriction on the minimum achievable phase-shift, is suitable for integration in a scaled technology and for high-frequency operation. Moreover, it allows a seamless control between output current sourcing and sinking capabilities, extending the load current range, and improving the response to load transients. A circuit design has been performed on a 110-nm BCD technology, with 3.7 V to 1.8 V voltage conversion, 60 mA of output current and 10 MHz operation. Simulations demonstrate the effectiveness of the proposed method.