基于SoC生态系统资源利用的语音控制比较器改进

S. Prongnuch, S. Sitjongsataporn
{"title":"基于SoC生态系统资源利用的语音控制比较器改进","authors":"S. Prongnuch, S. Sitjongsataporn","doi":"10.13052/jmm1550-4646.1846","DOIUrl":null,"url":null,"abstract":"This paper introduces the voice controlled comparator improvement for maneuvering a miniature electric vehicle based on the resource utilization in the system-on-chip (SoC) ecosystem. An intelligent parking assist is to support the driver outside a car while parking in the crowded locations. Voice controlled improvement based on the resource utilization on the SoC ecosystem is modified to command for moving vehicle. The normalized cross correlation (NCC) technique is proposed for voice controlled system with low utilization on the SoC ecosystem. Hardware and software co-design by the Xilinx VIVADO and Vitis software are used to design on an ARM multicore processor and field programmable gate array (FPGA) system inside a ‘Zedboard’ development board. We perform the experiments for Thai command word recognition via Bluetooth using the proposed NCC method to identify the basic command stored on SD card in Zedboard. Empirical results show the voice controlled improvement based on the Pearson’s correlation coefficient (PCC), modified PCC and proposed NCC methods on a Zedboard. The resource utilization on Zedboard are less than as 17.57% in look-up table (LUT), 29.12% in look-up table random access memory (LUTRAM), 6.44% in flip-flop (FF) and 2.38% in input/output (I/O) as compared with a ZYBO system. An average execution time of Zedboard using proposed NCC method is less than PCC and modified PCC as 5.12%, 1%, respectively. Results of proposed NCC of Thai voice command controlled show the validate workability at average percentage accuracy at 90% in the outdoor environments.","PeriodicalId":425561,"journal":{"name":"J. Mobile Multimedia","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voice Controlled Comparator Improvement Based on Resource Utilization in SoC Ecosystem for Parking Assist System\",\"authors\":\"S. Prongnuch, S. Sitjongsataporn\",\"doi\":\"10.13052/jmm1550-4646.1846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the voice controlled comparator improvement for maneuvering a miniature electric vehicle based on the resource utilization in the system-on-chip (SoC) ecosystem. An intelligent parking assist is to support the driver outside a car while parking in the crowded locations. Voice controlled improvement based on the resource utilization on the SoC ecosystem is modified to command for moving vehicle. The normalized cross correlation (NCC) technique is proposed for voice controlled system with low utilization on the SoC ecosystem. Hardware and software co-design by the Xilinx VIVADO and Vitis software are used to design on an ARM multicore processor and field programmable gate array (FPGA) system inside a ‘Zedboard’ development board. We perform the experiments for Thai command word recognition via Bluetooth using the proposed NCC method to identify the basic command stored on SD card in Zedboard. Empirical results show the voice controlled improvement based on the Pearson’s correlation coefficient (PCC), modified PCC and proposed NCC methods on a Zedboard. The resource utilization on Zedboard are less than as 17.57% in look-up table (LUT), 29.12% in look-up table random access memory (LUTRAM), 6.44% in flip-flop (FF) and 2.38% in input/output (I/O) as compared with a ZYBO system. An average execution time of Zedboard using proposed NCC method is less than PCC and modified PCC as 5.12%, 1%, respectively. Results of proposed NCC of Thai voice command controlled show the validate workability at average percentage accuracy at 90% in the outdoor environments.\",\"PeriodicalId\":425561,\"journal\":{\"name\":\"J. Mobile Multimedia\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mobile Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jmm1550-4646.1846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mobile Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jmm1550-4646.1846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种基于片上系统(SoC)生态系统中资源利用的小型电动汽车声控比较器改进方案。智能停车辅助系统是指在车辆拥挤的地方停车时,在车外为驾驶员提供支持的系统。基于SoC生态系统资源利用的语音控制改进,修改为移动车辆的指令。针对SoC生态系统中利用率较低的语音控制系统,提出了归一化互相关(NCC)技术。由赛灵思VIVADO和Vitis软件共同设计的硬件和软件用于在“Zedboard”开发板内的ARM多核处理器和现场可编程门阵列(FPGA)系统上进行设计。我们利用提出的NCC方法对存储在Zedboard中SD卡上的基本命令进行了蓝牙泰语命令词识别实验。实验结果表明,基于Pearson相关系数(PCC)、改进的PCC和在Zedboard上提出的NCC方法对语音控制进行了改进。与ZYBO系统相比,Zedboard的资源利用率在查找表(LUT)上低于17.57%,在查找表随机存取存储器(LUTRAM)上低于29.12%,在触发器(FF)上低于6.44%,在输入/输出(I/O)上低于2.38%。采用NCC法计算Zedboard的平均执行时间分别比PCC法和修正PCC法低5.12%、1%。所提出的泰语语音命令控制NCC在室外环境下的平均准确率为90%,验证了其可操作性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Voice Controlled Comparator Improvement Based on Resource Utilization in SoC Ecosystem for Parking Assist System
This paper introduces the voice controlled comparator improvement for maneuvering a miniature electric vehicle based on the resource utilization in the system-on-chip (SoC) ecosystem. An intelligent parking assist is to support the driver outside a car while parking in the crowded locations. Voice controlled improvement based on the resource utilization on the SoC ecosystem is modified to command for moving vehicle. The normalized cross correlation (NCC) technique is proposed for voice controlled system with low utilization on the SoC ecosystem. Hardware and software co-design by the Xilinx VIVADO and Vitis software are used to design on an ARM multicore processor and field programmable gate array (FPGA) system inside a ‘Zedboard’ development board. We perform the experiments for Thai command word recognition via Bluetooth using the proposed NCC method to identify the basic command stored on SD card in Zedboard. Empirical results show the voice controlled improvement based on the Pearson’s correlation coefficient (PCC), modified PCC and proposed NCC methods on a Zedboard. The resource utilization on Zedboard are less than as 17.57% in look-up table (LUT), 29.12% in look-up table random access memory (LUTRAM), 6.44% in flip-flop (FF) and 2.38% in input/output (I/O) as compared with a ZYBO system. An average execution time of Zedboard using proposed NCC method is less than PCC and modified PCC as 5.12%, 1%, respectively. Results of proposed NCC of Thai voice command controlled show the validate workability at average percentage accuracy at 90% in the outdoor environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Disruptive Innovation Potential and Business Case Investment Sensitivity of Open RAN Live Streaming Contents Influencing Game Playing Behavior Among Thailand Gamers Hyperledger Fabric-based Reliable Personal Health Information Sharing Model A Conceptual Model of Personalized Virtual Reality Trail Running Gamification Design Protein Prediction using Dictionary Based Regression Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1