基于仿真数据的概率神经网络与多层感知机和支持向量机在高速公路交通事故检测中的比较

Tanut Kongkhaensarn, M. Piantanakulchai
{"title":"基于仿真数据的概率神经网络与多层感知机和支持向量机在高速公路交通事故检测中的比较","authors":"Tanut Kongkhaensarn, M. Piantanakulchai","doi":"10.1109/JCSSE.2018.8457369","DOIUrl":null,"url":null,"abstract":"This research focuses on comparing probabilistic neural network with multilayer perceptron and support vector machine for detecting traffic incident on expressway based on simulation data. The data used in this experiment contains speed, density, occupancy, traffic flow, and time headway at specific location on expressway, as well as both upstream and downstream detectors. These data are generated by using the traffic modelling software, AIMSUN. Four indicators are used in evaluating the model’s performance which are detection rate, false alarm rate, mean time to detect, and classification rate. The result of these three models is not much different. These three models can mostly detect traffic incident and greatly classify between non-incident and incident situation. These model’s accuracy are more than 95 percent in training data and more than 75 percent in validating data.","PeriodicalId":338973,"journal":{"name":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of probabilistic neural network with multilayer perceptron and support vector machine for detecting traffic incident on expressway based on simulation data\",\"authors\":\"Tanut Kongkhaensarn, M. Piantanakulchai\",\"doi\":\"10.1109/JCSSE.2018.8457369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research focuses on comparing probabilistic neural network with multilayer perceptron and support vector machine for detecting traffic incident on expressway based on simulation data. The data used in this experiment contains speed, density, occupancy, traffic flow, and time headway at specific location on expressway, as well as both upstream and downstream detectors. These data are generated by using the traffic modelling software, AIMSUN. Four indicators are used in evaluating the model’s performance which are detection rate, false alarm rate, mean time to detect, and classification rate. The result of these three models is not much different. These three models can mostly detect traffic incident and greatly classify between non-incident and incident situation. These model’s accuracy are more than 95 percent in training data and more than 75 percent in validating data.\",\"PeriodicalId\":338973,\"journal\":{\"name\":\"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2018.8457369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2018.8457369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了基于仿真数据的概率神经网络与多层感知机和支持向量机在高速公路交通事故检测中的应用。本实验使用的数据包括高速公路特定位置的车速、密度、占用率、交通流量、车头时距,以及上下游探测器。这些数据是使用交通建模软件AIMSUN生成的。采用检测率、虚警率、平均检测时间和分类率四个指标来评价模型的性能。这三种模型的结果相差不大。这三种模型对交通事故的检测能力较强,对非事故和事故情况的分类能力较强。这些模型在训练数据上的准确率超过95%,在验证数据上的准确率超过75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of probabilistic neural network with multilayer perceptron and support vector machine for detecting traffic incident on expressway based on simulation data
This research focuses on comparing probabilistic neural network with multilayer perceptron and support vector machine for detecting traffic incident on expressway based on simulation data. The data used in this experiment contains speed, density, occupancy, traffic flow, and time headway at specific location on expressway, as well as both upstream and downstream detectors. These data are generated by using the traffic modelling software, AIMSUN. Four indicators are used in evaluating the model’s performance which are detection rate, false alarm rate, mean time to detect, and classification rate. The result of these three models is not much different. These three models can mostly detect traffic incident and greatly classify between non-incident and incident situation. These model’s accuracy are more than 95 percent in training data and more than 75 percent in validating data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Android Forensic and Security Assessment for Hospital and Stock-and-Trade Applications in Thailand Traffic State Prediction Using Convolutional Neural Network Development of Low-Cost in-the-Ear EEG Prototype JCSSE 2018 Title Page JCSSE 2018 Session Chairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1