使用XAI和SHAP框架解释PDF恶意软件检测的机器和深度学习模型

Tahsinur Rahman, Nusaiba Ahmed, Shama Monjur, Fasbeer Mohammad Haque, Muhammad Iqbal Hossain
{"title":"使用XAI和SHAP框架解释PDF恶意软件检测的机器和深度学习模型","authors":"Tahsinur Rahman, Nusaiba Ahmed, Shama Monjur, Fasbeer Mohammad Haque, Muhammad Iqbal Hossain","doi":"10.1109/INOCON57975.2023.10101116","DOIUrl":null,"url":null,"abstract":"As the world progresses towards a digital era, the transfer of data in Portable Document Format (PDF) has become ubiquitous. Regrettably, this format is susceptible to malware attacks and the conventional anti-malware and anti-virus software may not be able to detect PDF malware effectively. In response to this problem, the implementation of machine learning algorithms and neural networks has been proposed in the past. However, the lack of transparency in these models raises concerns regarding their ethical and responsible decision-making. To address this concern, the utilization of Explainable AI (XAI) with the SHAP framework is proposed to classify PDF files as either malicious or clean, providing both a global and local understanding of the models’ decisions. The algorithms employed in this endeavor include Stochastic Gradient Descent (SGD), XGBoost Classifier, Single Layer Perceptron, and Artificial Neural Network (ANN).","PeriodicalId":113637,"journal":{"name":"2023 2nd International Conference for Innovation in Technology (INOCON)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpreting Machine and Deep Learning Models for PDF Malware Detection using XAI and SHAP Framework\",\"authors\":\"Tahsinur Rahman, Nusaiba Ahmed, Shama Monjur, Fasbeer Mohammad Haque, Muhammad Iqbal Hossain\",\"doi\":\"10.1109/INOCON57975.2023.10101116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the world progresses towards a digital era, the transfer of data in Portable Document Format (PDF) has become ubiquitous. Regrettably, this format is susceptible to malware attacks and the conventional anti-malware and anti-virus software may not be able to detect PDF malware effectively. In response to this problem, the implementation of machine learning algorithms and neural networks has been proposed in the past. However, the lack of transparency in these models raises concerns regarding their ethical and responsible decision-making. To address this concern, the utilization of Explainable AI (XAI) with the SHAP framework is proposed to classify PDF files as either malicious or clean, providing both a global and local understanding of the models’ decisions. The algorithms employed in this endeavor include Stochastic Gradient Descent (SGD), XGBoost Classifier, Single Layer Perceptron, and Artificial Neural Network (ANN).\",\"PeriodicalId\":113637,\"journal\":{\"name\":\"2023 2nd International Conference for Innovation in Technology (INOCON)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd International Conference for Innovation in Technology (INOCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INOCON57975.2023.10101116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference for Innovation in Technology (INOCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INOCON57975.2023.10101116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着世界向数字时代发展,便携式文档格式(PDF)的数据传输已经变得无处不在。遗憾的是,这种格式容易受到恶意软件的攻击,传统的反恶意软件和反病毒软件可能无法有效地检测PDF恶意软件。针对这个问题,过去已经提出了机器学习算法和神经网络的实现。然而,这些模型缺乏透明度引起了人们对其道德和负责任决策的担忧。为了解决这个问题,建议使用SHAP框架的可解释AI (XAI)将PDF文件分类为恶意文件或干净文件,从而提供对模型决策的全局和局部理解。在这项工作中使用的算法包括随机梯度下降(SGD), XGBoost分类器,单层感知器和人工神经网络(ANN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interpreting Machine and Deep Learning Models for PDF Malware Detection using XAI and SHAP Framework
As the world progresses towards a digital era, the transfer of data in Portable Document Format (PDF) has become ubiquitous. Regrettably, this format is susceptible to malware attacks and the conventional anti-malware and anti-virus software may not be able to detect PDF malware effectively. In response to this problem, the implementation of machine learning algorithms and neural networks has been proposed in the past. However, the lack of transparency in these models raises concerns regarding their ethical and responsible decision-making. To address this concern, the utilization of Explainable AI (XAI) with the SHAP framework is proposed to classify PDF files as either malicious or clean, providing both a global and local understanding of the models’ decisions. The algorithms employed in this endeavor include Stochastic Gradient Descent (SGD), XGBoost Classifier, Single Layer Perceptron, and Artificial Neural Network (ANN).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study of Machine Learning Algorithms for Predicting Heart Disease Analysis and Evaluation of Medical Care Data using Analytic Fuzzy Process Digital Image Enhancement using Conventional Neural Network Multi-View Image Reconstruction Algorithm Based on Virtual Reality Technology Application of Web Data Mining Technology in Computer Information Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1