{"title":"用于基因转移的硅基单细胞电穿孔微芯片","authors":"Younghak Cho, B. Pioufle, N. Takama, Beomjoon Kim","doi":"10.1109/MMB.2006.251526","DOIUrl":null,"url":null,"abstract":"In our contribution, we present the fabrication of electroporation microchip in detail. The practical experiments of single-cell electroporation with our fabricated microchip will be carried out. Electroporation test efficiency and cell viability tests will be provided. This device enables to reduce the size of samples and thus the use of small amount of reagents. It may also permit to avoid cell separation (transfected cells versus non transfected cells) encountered when traditional bulk electroporation is held","PeriodicalId":170356,"journal":{"name":"2006 International Conference on Microtechnologies in Medicine and Biology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Silicon-Based Single-Cell Electroporation Microchip for Gene Transfer\",\"authors\":\"Younghak Cho, B. Pioufle, N. Takama, Beomjoon Kim\",\"doi\":\"10.1109/MMB.2006.251526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our contribution, we present the fabrication of electroporation microchip in detail. The practical experiments of single-cell electroporation with our fabricated microchip will be carried out. Electroporation test efficiency and cell viability tests will be provided. This device enables to reduce the size of samples and thus the use of small amount of reagents. It may also permit to avoid cell separation (transfected cells versus non transfected cells) encountered when traditional bulk electroporation is held\",\"PeriodicalId\":170356,\"journal\":{\"name\":\"2006 International Conference on Microtechnologies in Medicine and Biology\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Microtechnologies in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMB.2006.251526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Microtechnologies in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMB.2006.251526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Silicon-Based Single-Cell Electroporation Microchip for Gene Transfer
In our contribution, we present the fabrication of electroporation microchip in detail. The practical experiments of single-cell electroporation with our fabricated microchip will be carried out. Electroporation test efficiency and cell viability tests will be provided. This device enables to reduce the size of samples and thus the use of small amount of reagents. It may also permit to avoid cell separation (transfected cells versus non transfected cells) encountered when traditional bulk electroporation is held