基于teo的新型γ matone特征环境声音分类

Dharmesh M. Agrawal, Hardik B. Sailor, Meet H. Soni, H. Patil
{"title":"基于teo的新型γ matone特征环境声音分类","authors":"Dharmesh M. Agrawal, Hardik B. Sailor, Meet H. Soni, H. Patil","doi":"10.23919/EUSIPCO.2017.8081521","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to use modified Gammatone filterbank with Teager Energy Operator (TEO) for environmental sound classification (ESC) task. TEO can track energy as a function of both amplitude and frequency of an audio signal. TEO is better for capturing energy variations in the signal that is produced by a real physical system, such as, environmental sounds that contain amplitude and frequency modulations. In proposed feature set, we have used Gammatone filterbank since it represents characteristics of human auditory processing. Here, we have used two classifiers, namely, Gaussian Mixture Model (GMM) using cepstral features, and Convolutional Neural Network (CNN) using spectral features. We performed experiments on two datasets, namely, ESC-50, and UrbanSound8K. We compared TEO-based coefficients with Mel filter cepstral coefficients (MFCC) and Gammatone cepstral coefficients (GTCC), in which GTCC used mean square energy. Using GMM, the proposed TEO-based Gammatone Cepstral Coefficients (TEO-GTCC), and its score-level fusion with MFCC gave absolute improvement of 0.45 %, and 3.85 % in classification accuracy over MFCC on ESC-50 dataset. Similarly, on UrbanSound8K dataset the proposed TEO-GTCC, and its score-level fusion with GTCC gave absolute improvement of 1.40 %, and 2.44 % in classification accuracy over MFCC. Using CNN, the score-level fusion of Gammatone spectral coefficient (GTSC) and the proposed TEO-based Gammatone spectral coefficients (TEO-GTSC) gave absolute improvement of 14.10 %, and 14.52 % in classification accuracy over Mel filterbank energies (FBE) on ESC-50 and UrbanSond8K datasets, respectively. This shows that proposed TEO-based Gammatone features contain complementary information which is helpful in ESC task.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Novel TEO-based Gammatone features for environmental sound classification\",\"authors\":\"Dharmesh M. Agrawal, Hardik B. Sailor, Meet H. Soni, H. Patil\",\"doi\":\"10.23919/EUSIPCO.2017.8081521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose to use modified Gammatone filterbank with Teager Energy Operator (TEO) for environmental sound classification (ESC) task. TEO can track energy as a function of both amplitude and frequency of an audio signal. TEO is better for capturing energy variations in the signal that is produced by a real physical system, such as, environmental sounds that contain amplitude and frequency modulations. In proposed feature set, we have used Gammatone filterbank since it represents characteristics of human auditory processing. Here, we have used two classifiers, namely, Gaussian Mixture Model (GMM) using cepstral features, and Convolutional Neural Network (CNN) using spectral features. We performed experiments on two datasets, namely, ESC-50, and UrbanSound8K. We compared TEO-based coefficients with Mel filter cepstral coefficients (MFCC) and Gammatone cepstral coefficients (GTCC), in which GTCC used mean square energy. Using GMM, the proposed TEO-based Gammatone Cepstral Coefficients (TEO-GTCC), and its score-level fusion with MFCC gave absolute improvement of 0.45 %, and 3.85 % in classification accuracy over MFCC on ESC-50 dataset. Similarly, on UrbanSound8K dataset the proposed TEO-GTCC, and its score-level fusion with GTCC gave absolute improvement of 1.40 %, and 2.44 % in classification accuracy over MFCC. Using CNN, the score-level fusion of Gammatone spectral coefficient (GTSC) and the proposed TEO-based Gammatone spectral coefficients (TEO-GTSC) gave absolute improvement of 14.10 %, and 14.52 % in classification accuracy over Mel filterbank energies (FBE) on ESC-50 and UrbanSond8K datasets, respectively. This shows that proposed TEO-based Gammatone features contain complementary information which is helpful in ESC task.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

本文提出了一种基于Teager能量算子(TEO)的改进Gammatone滤波器组用于环境声分类(ESC)任务。TEO可以跟踪能量作为一个函数的幅度和频率的音频信号。TEO更适合捕捉由真实物理系统产生的信号中的能量变化,例如包含幅度和频率调制的环境声音。在提出的特征集中,我们使用了Gammatone滤波器组,因为它代表了人类听觉处理的特征。在这里,我们使用了两个分类器,即使用倒谱特征的高斯混合模型(GMM)和使用谱特征的卷积神经网络(CNN)。我们在ESC-50和UrbanSound8K两个数据集上进行了实验。我们将基于teo的系数与Mel滤波倒谱系数(MFCC)和Gammatone倒谱系数(GTCC)进行了比较,其中GTCC使用均方能量。在ESC-50数据集上,基于teo的Gammatone Cepstral系数(TEO-GTCC)及其与MFCC的分数级融合在分类准确率上分别提高了0.45%和3.85%。同样,在UrbanSound8K数据集上,所提出的TEO-GTCC及其与GTCC的分数级融合在分类精度上比MFCC提高了1.40%,2.44%。使用CNN,在ESC-50和UrbanSond8K数据集上,伽玛酮谱系数(GTSC)和基于TEO-GTSC的伽玛酮谱系数(TEO-GTSC)的分数级融合在Mel滤波组能量(FBE)上的分类精度分别提高了14.10%和14.52%。这表明提出的基于teo的Gammatone特征包含互补信息,有助于ESC任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel TEO-based Gammatone features for environmental sound classification
In this paper, we propose to use modified Gammatone filterbank with Teager Energy Operator (TEO) for environmental sound classification (ESC) task. TEO can track energy as a function of both amplitude and frequency of an audio signal. TEO is better for capturing energy variations in the signal that is produced by a real physical system, such as, environmental sounds that contain amplitude and frequency modulations. In proposed feature set, we have used Gammatone filterbank since it represents characteristics of human auditory processing. Here, we have used two classifiers, namely, Gaussian Mixture Model (GMM) using cepstral features, and Convolutional Neural Network (CNN) using spectral features. We performed experiments on two datasets, namely, ESC-50, and UrbanSound8K. We compared TEO-based coefficients with Mel filter cepstral coefficients (MFCC) and Gammatone cepstral coefficients (GTCC), in which GTCC used mean square energy. Using GMM, the proposed TEO-based Gammatone Cepstral Coefficients (TEO-GTCC), and its score-level fusion with MFCC gave absolute improvement of 0.45 %, and 3.85 % in classification accuracy over MFCC on ESC-50 dataset. Similarly, on UrbanSound8K dataset the proposed TEO-GTCC, and its score-level fusion with GTCC gave absolute improvement of 1.40 %, and 2.44 % in classification accuracy over MFCC. Using CNN, the score-level fusion of Gammatone spectral coefficient (GTSC) and the proposed TEO-based Gammatone spectral coefficients (TEO-GTSC) gave absolute improvement of 14.10 %, and 14.52 % in classification accuracy over Mel filterbank energies (FBE) on ESC-50 and UrbanSond8K datasets, respectively. This shows that proposed TEO-based Gammatone features contain complementary information which is helpful in ESC task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring using a perturbation-basec regularization approach Distributed computational load balancing for real-time applications Nonconvulsive epileptic seizures detection using multiway data analysis Performance improvement for wideband beamforming with white noise reduction based on sparse arrays Wideband DoA estimation based on joint optimisation of array and spatial sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1