Gabriele Pozzato, S. Formentin, Giulio Panzani, S. Savaresi
{"title":"具有启动特性的增程电动汽车的最低成本能源管理","authors":"Gabriele Pozzato, S. Formentin, Giulio Panzani, S. Savaresi","doi":"10.1109/CCTA.2018.8511621","DOIUrl":null,"url":null,"abstract":"In this work, the Energy Management Strategy (EMS) problem is solved considering an Electric Vehicle (EV) equipped with a Range Extender (REX), a device developed to increase the All Electric Range (AER) provided by the battery, which can be switched ON and OFF depending on the need. First, a control-oriented modeling of the powertrain is introduced focusing attention on REX description in terms of power generation, and thermal dynamics. Secondly, the EMS problem is formalized as a mixed-integer convex program. Thus, the optimal energy management policy is obtained by minimizing an objective function taking into account electricity and battery aging costs, REX fuel consumption and start-up costs. The introduction of REX thermal dynamics allows for temperature varying start-up costs and simplified REX aging modeling. To show the effectiveness of the EMS, an electric bus case study is dealt with and a sensitivity analysis is performed over some critical optimization parameters to understand when purchasing a REX is interesting and economically effective.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Least Costly Energy Management for Extended Range Electric Vehicles with Start-Up Characterization\",\"authors\":\"Gabriele Pozzato, S. Formentin, Giulio Panzani, S. Savaresi\",\"doi\":\"10.1109/CCTA.2018.8511621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the Energy Management Strategy (EMS) problem is solved considering an Electric Vehicle (EV) equipped with a Range Extender (REX), a device developed to increase the All Electric Range (AER) provided by the battery, which can be switched ON and OFF depending on the need. First, a control-oriented modeling of the powertrain is introduced focusing attention on REX description in terms of power generation, and thermal dynamics. Secondly, the EMS problem is formalized as a mixed-integer convex program. Thus, the optimal energy management policy is obtained by minimizing an objective function taking into account electricity and battery aging costs, REX fuel consumption and start-up costs. The introduction of REX thermal dynamics allows for temperature varying start-up costs and simplified REX aging modeling. To show the effectiveness of the EMS, an electric bus case study is dealt with and a sensitivity analysis is performed over some critical optimization parameters to understand when purchasing a REX is interesting and economically effective.\",\"PeriodicalId\":358360,\"journal\":{\"name\":\"2018 IEEE Conference on Control Technology and Applications (CCTA)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference on Control Technology and Applications (CCTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCTA.2018.8511621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Least Costly Energy Management for Extended Range Electric Vehicles with Start-Up Characterization
In this work, the Energy Management Strategy (EMS) problem is solved considering an Electric Vehicle (EV) equipped with a Range Extender (REX), a device developed to increase the All Electric Range (AER) provided by the battery, which can be switched ON and OFF depending on the need. First, a control-oriented modeling of the powertrain is introduced focusing attention on REX description in terms of power generation, and thermal dynamics. Secondly, the EMS problem is formalized as a mixed-integer convex program. Thus, the optimal energy management policy is obtained by minimizing an objective function taking into account electricity and battery aging costs, REX fuel consumption and start-up costs. The introduction of REX thermal dynamics allows for temperature varying start-up costs and simplified REX aging modeling. To show the effectiveness of the EMS, an electric bus case study is dealt with and a sensitivity analysis is performed over some critical optimization parameters to understand when purchasing a REX is interesting and economically effective.