{"title":"主蒸汽管线热疲劳失效","authors":"","doi":"10.31399/asm.fach.power.c0048850","DOIUrl":null,"url":null,"abstract":"\n Cracks on the outer surface near a hanger lug were revealed by visual inspection of a type 316 stainless steel main steam line of a major utility boiler system. Cracking was found to have initiated at the outside of the pipe wall or immediately beneath the surface. The microstructure of the failed pipe was found to consist of a matrix precipitate array (M23C6) and large s-phase particles in the grain boundaries. A portable grinding tool was used to prepare the surface and followed by swab etching. All material upstream of the boiler stop valve was revealed to have oriented the cracking normally or nearly so to the main hoop stress direction. Residual-stress measurements were made using a hole-drilling technique and strain gage rosettes. Large tensile axial residual stresses were measured at nearly every location investigated with a large residual hoop stress was found for locations before the stop valve. It was concluded using thermal stress analysis done using numerical methods and software identified as CREPLACYL that one or more severe thermal downshocks might cause the damage pattern that was found. The root cause of the failure was identified to be thermal fatigue, with associated creep relaxation.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure of a Main Steam Line by Thermal Fatigue\",\"authors\":\"\",\"doi\":\"10.31399/asm.fach.power.c0048850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cracks on the outer surface near a hanger lug were revealed by visual inspection of a type 316 stainless steel main steam line of a major utility boiler system. Cracking was found to have initiated at the outside of the pipe wall or immediately beneath the surface. The microstructure of the failed pipe was found to consist of a matrix precipitate array (M23C6) and large s-phase particles in the grain boundaries. A portable grinding tool was used to prepare the surface and followed by swab etching. All material upstream of the boiler stop valve was revealed to have oriented the cracking normally or nearly so to the main hoop stress direction. Residual-stress measurements were made using a hole-drilling technique and strain gage rosettes. Large tensile axial residual stresses were measured at nearly every location investigated with a large residual hoop stress was found for locations before the stop valve. It was concluded using thermal stress analysis done using numerical methods and software identified as CREPLACYL that one or more severe thermal downshocks might cause the damage pattern that was found. The root cause of the failure was identified to be thermal fatigue, with associated creep relaxation.\",\"PeriodicalId\":107406,\"journal\":{\"name\":\"ASM Failure Analysis Case Histories: Power Generating Equipment\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Failure Analysis Case Histories: Power Generating Equipment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.fach.power.c0048850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Power Generating Equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.power.c0048850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cracks on the outer surface near a hanger lug were revealed by visual inspection of a type 316 stainless steel main steam line of a major utility boiler system. Cracking was found to have initiated at the outside of the pipe wall or immediately beneath the surface. The microstructure of the failed pipe was found to consist of a matrix precipitate array (M23C6) and large s-phase particles in the grain boundaries. A portable grinding tool was used to prepare the surface and followed by swab etching. All material upstream of the boiler stop valve was revealed to have oriented the cracking normally or nearly so to the main hoop stress direction. Residual-stress measurements were made using a hole-drilling technique and strain gage rosettes. Large tensile axial residual stresses were measured at nearly every location investigated with a large residual hoop stress was found for locations before the stop valve. It was concluded using thermal stress analysis done using numerical methods and software identified as CREPLACYL that one or more severe thermal downshocks might cause the damage pattern that was found. The root cause of the failure was identified to be thermal fatigue, with associated creep relaxation.