利用互信息的图表示进行图模型判别

Francisco Hawas, P. Djurić
{"title":"利用互信息的图表示进行图模型判别","authors":"Francisco Hawas, P. Djurić","doi":"10.23919/EUSIPCO.2018.8553169","DOIUrl":null,"url":null,"abstract":"We present a novel approach of graph representation based on mutual information of a random walk in a graph. This representation, as any global metric of a graph, can be used to identify the model generator of the observed network. In this study, we use our graph representation combined with Random Forest (RF) to discriminate between Erdos-Renyi (ER), Stochastic Block Model (SBM) and Planted Clique (PC) models. We also combine our graph representation with a Squared Mahalanobis Distance (SMD)-based test to reject a model given an observed network. We test the proposed method with computer simulations.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph representation using mutual information for graph model discrimination\",\"authors\":\"Francisco Hawas, P. Djurić\",\"doi\":\"10.23919/EUSIPCO.2018.8553169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach of graph representation based on mutual information of a random walk in a graph. This representation, as any global metric of a graph, can be used to identify the model generator of the observed network. In this study, we use our graph representation combined with Random Forest (RF) to discriminate between Erdos-Renyi (ER), Stochastic Block Model (SBM) and Planted Clique (PC) models. We also combine our graph representation with a Squared Mahalanobis Distance (SMD)-based test to reject a model given an observed network. We test the proposed method with computer simulations.\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于图中随机游走互信息的图表示方法。这种表示,作为图的任何全局度量,可以用来识别观察到的网络的模型生成器。在这项研究中,我们使用我们的图表示结合随机森林(RF)来区分Erdos-Renyi (ER),随机块模型(SBM)和植团(PC)模型。我们还将我们的图表示与基于平方马氏距离(SMD)的测试相结合,以拒绝给定观察网络的模型。我们用计算机模拟测试了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph representation using mutual information for graph model discrimination
We present a novel approach of graph representation based on mutual information of a random walk in a graph. This representation, as any global metric of a graph, can be used to identify the model generator of the observed network. In this study, we use our graph representation combined with Random Forest (RF) to discriminate between Erdos-Renyi (ER), Stochastic Block Model (SBM) and Planted Clique (PC) models. We also combine our graph representation with a Squared Mahalanobis Distance (SMD)-based test to reject a model given an observed network. We test the proposed method with computer simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1