{"title":"利用计算和通信任务的智能并行性加速分布式K-FAC","authors":"S. Shi, Lin Zhang, Bo Li","doi":"10.1109/ICDCS51616.2021.00059","DOIUrl":null,"url":null,"abstract":"Distributed training with synchronous stochastic gradient descent (SGD) on GPU clusters has been widely used to accelerate the training process of deep models. However, SGD only utilizes the first-order gradient in model parameter updates, which may take days or weeks. Recent studies have successfully exploited approximate second-order information to speed up the training process, in which the Kronecker-Factored Approximate Curvature (KFAC) emerges as one of the most efficient approximation algorithms for training deep models. Yet, when leveraging GPU clusters to train models with distributed KFAC (D-KFAC), it incurs extensive computation as well as introduces extra communications during each iteration. In this work, we propose D-KFAC (SPD-KFAC) with smart parallelism of computing and communication tasks to reduce the iteration time. Specifically, 1) we first characterize the performance bottlenecks of D-KFAC, 2) we design and implement a pipelining mechanism for Kronecker factors computation and communication with dynamic tensor fusion, and 3) we develop a load balancing placement for inverting multiple matrices on GPU clusters. We conduct realworld experiments on a 64-GPU cluster with 100Gb/s InfiniBand interconnect. Experimental results show that our proposed SPD-KFAC training scheme can achieve 10%-35% improvement over state-of-the-art algorithms.","PeriodicalId":222376,"journal":{"name":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Accelerating Distributed K-FAC with Smart Parallelism of Computing and Communication Tasks\",\"authors\":\"S. Shi, Lin Zhang, Bo Li\",\"doi\":\"10.1109/ICDCS51616.2021.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed training with synchronous stochastic gradient descent (SGD) on GPU clusters has been widely used to accelerate the training process of deep models. However, SGD only utilizes the first-order gradient in model parameter updates, which may take days or weeks. Recent studies have successfully exploited approximate second-order information to speed up the training process, in which the Kronecker-Factored Approximate Curvature (KFAC) emerges as one of the most efficient approximation algorithms for training deep models. Yet, when leveraging GPU clusters to train models with distributed KFAC (D-KFAC), it incurs extensive computation as well as introduces extra communications during each iteration. In this work, we propose D-KFAC (SPD-KFAC) with smart parallelism of computing and communication tasks to reduce the iteration time. Specifically, 1) we first characterize the performance bottlenecks of D-KFAC, 2) we design and implement a pipelining mechanism for Kronecker factors computation and communication with dynamic tensor fusion, and 3) we develop a load balancing placement for inverting multiple matrices on GPU clusters. We conduct realworld experiments on a 64-GPU cluster with 100Gb/s InfiniBand interconnect. Experimental results show that our proposed SPD-KFAC training scheme can achieve 10%-35% improvement over state-of-the-art algorithms.\",\"PeriodicalId\":222376,\"journal\":{\"name\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS51616.2021.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS51616.2021.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accelerating Distributed K-FAC with Smart Parallelism of Computing and Communication Tasks
Distributed training with synchronous stochastic gradient descent (SGD) on GPU clusters has been widely used to accelerate the training process of deep models. However, SGD only utilizes the first-order gradient in model parameter updates, which may take days or weeks. Recent studies have successfully exploited approximate second-order information to speed up the training process, in which the Kronecker-Factored Approximate Curvature (KFAC) emerges as one of the most efficient approximation algorithms for training deep models. Yet, when leveraging GPU clusters to train models with distributed KFAC (D-KFAC), it incurs extensive computation as well as introduces extra communications during each iteration. In this work, we propose D-KFAC (SPD-KFAC) with smart parallelism of computing and communication tasks to reduce the iteration time. Specifically, 1) we first characterize the performance bottlenecks of D-KFAC, 2) we design and implement a pipelining mechanism for Kronecker factors computation and communication with dynamic tensor fusion, and 3) we develop a load balancing placement for inverting multiple matrices on GPU clusters. We conduct realworld experiments on a 64-GPU cluster with 100Gb/s InfiniBand interconnect. Experimental results show that our proposed SPD-KFAC training scheme can achieve 10%-35% improvement over state-of-the-art algorithms.