Z. Tan, Yun Huang, Suyong Wu, Xiaobao Zhang, Yibo Zhang
{"title":"一种基于散射干扰效应的表面检测方法","authors":"Z. Tan, Yun Huang, Suyong Wu, Xiaobao Zhang, Yibo Zhang","doi":"10.1117/12.2191034","DOIUrl":null,"url":null,"abstract":"Light scattering is an important and classical method for optical surface testing. Typical scheme of light scattering measurement often uses a single laser beam incidence, and then evaluates the surface quality via detecting and analyzing the scattering signal. In this work, a developed method for optical surface testing is proposed and demonstrated, and whose measuring principle is based on the scattering interference effect. In this approach, a single longitudinal mode laser beam is divided into two beams, when these beams irradiate the optical surface, their respective scattering fields would interfere with each other. If the phase between these incidence lights is scanned periodically, their scattering light interference signal would fluctuate simultaneously. Through analyzing this kind of scattering signal, our method can not only determine the scattering loss of optical surface, but also scale its inhomogeneity performance. A simply set of experimental apparatus is built up and used to demonstrated this method, which uses a single mode laser as the light source. Furthermore, to modulate the phase difference between two incidence beams, a piezoelectric ceramic is used. Some typical cases are then experimented and discussed, the results show that this method can be used to calibrate the quality of optical surface.","PeriodicalId":212434,"journal":{"name":"SPIE Optical Systems Design","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A developed method for surface testing based on the scattering interference effect\",\"authors\":\"Z. Tan, Yun Huang, Suyong Wu, Xiaobao Zhang, Yibo Zhang\",\"doi\":\"10.1117/12.2191034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light scattering is an important and classical method for optical surface testing. Typical scheme of light scattering measurement often uses a single laser beam incidence, and then evaluates the surface quality via detecting and analyzing the scattering signal. In this work, a developed method for optical surface testing is proposed and demonstrated, and whose measuring principle is based on the scattering interference effect. In this approach, a single longitudinal mode laser beam is divided into two beams, when these beams irradiate the optical surface, their respective scattering fields would interfere with each other. If the phase between these incidence lights is scanned periodically, their scattering light interference signal would fluctuate simultaneously. Through analyzing this kind of scattering signal, our method can not only determine the scattering loss of optical surface, but also scale its inhomogeneity performance. A simply set of experimental apparatus is built up and used to demonstrated this method, which uses a single mode laser as the light source. Furthermore, to modulate the phase difference between two incidence beams, a piezoelectric ceramic is used. Some typical cases are then experimented and discussed, the results show that this method can be used to calibrate the quality of optical surface.\",\"PeriodicalId\":212434,\"journal\":{\"name\":\"SPIE Optical Systems Design\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optical Systems Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2191034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optical Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2191034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A developed method for surface testing based on the scattering interference effect
Light scattering is an important and classical method for optical surface testing. Typical scheme of light scattering measurement often uses a single laser beam incidence, and then evaluates the surface quality via detecting and analyzing the scattering signal. In this work, a developed method for optical surface testing is proposed and demonstrated, and whose measuring principle is based on the scattering interference effect. In this approach, a single longitudinal mode laser beam is divided into two beams, when these beams irradiate the optical surface, their respective scattering fields would interfere with each other. If the phase between these incidence lights is scanned periodically, their scattering light interference signal would fluctuate simultaneously. Through analyzing this kind of scattering signal, our method can not only determine the scattering loss of optical surface, but also scale its inhomogeneity performance. A simply set of experimental apparatus is built up and used to demonstrated this method, which uses a single mode laser as the light source. Furthermore, to modulate the phase difference between two incidence beams, a piezoelectric ceramic is used. Some typical cases are then experimented and discussed, the results show that this method can be used to calibrate the quality of optical surface.