{"title":"欧洲XFEL加速器大功率射频管放大器基于模型的快速保护系统扩展摘要","authors":"L. Butkowski, V. Vogel, H. Schlarb, J. Szabatin","doi":"10.1109/RTC.2016.7543163","DOIUrl":null,"url":null,"abstract":"The driving engine of the superconducting accelerator of the European X-ray Free-Electron Laser (XFEL) are 27 Radio Frequency (RF) stations. Each of an underground RF station consists from multi-beam horizontal klystron which can provide up to 10MW of power at 1.3GHz. Klystrons are sensitive devices with limited lifetime and high mean time between failures. In the real operation the lifetime of the tube can be thoroughly reduced by failures. To minimize the influence of service conditions to the klystrons lifetime the special fast protection system named as Klystron Lifetime Management System (KLM) has been developed. The main task of this system is to detect all events which can destroy the tube as quickly as possible and switch off driving RF signal or HV. Detection of events is based on comparison of model of high power RF amplifier with real signals. Implementation is done in Field Programmable Gate Array (FPGA). For the XFEL implementation of KLM is based on the standard Low Level RF (LLRF) Micro Tele-communications Computing Architecture (MTCA.4 or xTCA). This article focuses on the klystron model estimation and implementation of KLM in FPGA. Results of the system implemented on MTCA.4 architecture will be presented in the end.","PeriodicalId":383702,"journal":{"name":"2016 IEEE-NPSS Real Time Conference (RT)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended abstract for model based fast protection system for high power RF tube amplifiers used at European XFEL accelerator\",\"authors\":\"L. Butkowski, V. Vogel, H. Schlarb, J. Szabatin\",\"doi\":\"10.1109/RTC.2016.7543163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The driving engine of the superconducting accelerator of the European X-ray Free-Electron Laser (XFEL) are 27 Radio Frequency (RF) stations. Each of an underground RF station consists from multi-beam horizontal klystron which can provide up to 10MW of power at 1.3GHz. Klystrons are sensitive devices with limited lifetime and high mean time between failures. In the real operation the lifetime of the tube can be thoroughly reduced by failures. To minimize the influence of service conditions to the klystrons lifetime the special fast protection system named as Klystron Lifetime Management System (KLM) has been developed. The main task of this system is to detect all events which can destroy the tube as quickly as possible and switch off driving RF signal or HV. Detection of events is based on comparison of model of high power RF amplifier with real signals. Implementation is done in Field Programmable Gate Array (FPGA). For the XFEL implementation of KLM is based on the standard Low Level RF (LLRF) Micro Tele-communications Computing Architecture (MTCA.4 or xTCA). This article focuses on the klystron model estimation and implementation of KLM in FPGA. Results of the system implemented on MTCA.4 architecture will be presented in the end.\",\"PeriodicalId\":383702,\"journal\":{\"name\":\"2016 IEEE-NPSS Real Time Conference (RT)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE-NPSS Real Time Conference (RT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTC.2016.7543163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE-NPSS Real Time Conference (RT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTC.2016.7543163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extended abstract for model based fast protection system for high power RF tube amplifiers used at European XFEL accelerator
The driving engine of the superconducting accelerator of the European X-ray Free-Electron Laser (XFEL) are 27 Radio Frequency (RF) stations. Each of an underground RF station consists from multi-beam horizontal klystron which can provide up to 10MW of power at 1.3GHz. Klystrons are sensitive devices with limited lifetime and high mean time between failures. In the real operation the lifetime of the tube can be thoroughly reduced by failures. To minimize the influence of service conditions to the klystrons lifetime the special fast protection system named as Klystron Lifetime Management System (KLM) has been developed. The main task of this system is to detect all events which can destroy the tube as quickly as possible and switch off driving RF signal or HV. Detection of events is based on comparison of model of high power RF amplifier with real signals. Implementation is done in Field Programmable Gate Array (FPGA). For the XFEL implementation of KLM is based on the standard Low Level RF (LLRF) Micro Tele-communications Computing Architecture (MTCA.4 or xTCA). This article focuses on the klystron model estimation and implementation of KLM in FPGA. Results of the system implemented on MTCA.4 architecture will be presented in the end.