基于TSN的车载网络动态调度与路由

Ammad Ali Syed, S. Ayaz, T. Leinmüller, Madhu Chandra
{"title":"基于TSN的车载网络动态调度与路由","authors":"Ammad Ali Syed, S. Ayaz, T. Leinmüller, Madhu Chandra","doi":"10.1109/ICCWorkshops50388.2021.9473810","DOIUrl":null,"url":null,"abstract":"The future autonomous vehicle is not only processing the copious amount of indispensable data generated by its onboard sensors but also utilizing the data from other vehicles, roadside unit (RSU) etc. Managing the mixed-criticality data requires intelligent time-sensitive scheduling and routing within the in-vehicle network (IVN) infrastructure. Use-cases related to self-adaptivity (including vehicular communication), partial networking and embedded virtualization require to change the configuration of the IVN at runtime. State-of-the-art IEEE Time-Sensitive Networking (TSN) standards possess a grave challenge in handling runtime reconfigurations. Above mentioned use-cases foster the development of scalable and efficient dynamic scheduling and routing algorithms for TSN based IVN. In this paper, four meticulously designed heuristics are analyzed for dynamic scheduling and routing on-the-fly in TSN based IVN. One of the algorithms, Bottleneck heuristic outperforms others in term of schedulability and response time. It schedules around 16 − 22% more flows as compared to other developed heuristics depending on the network load.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Dynamic Scheduling and Routing for TSN based In-vehicle Networks\",\"authors\":\"Ammad Ali Syed, S. Ayaz, T. Leinmüller, Madhu Chandra\",\"doi\":\"10.1109/ICCWorkshops50388.2021.9473810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The future autonomous vehicle is not only processing the copious amount of indispensable data generated by its onboard sensors but also utilizing the data from other vehicles, roadside unit (RSU) etc. Managing the mixed-criticality data requires intelligent time-sensitive scheduling and routing within the in-vehicle network (IVN) infrastructure. Use-cases related to self-adaptivity (including vehicular communication), partial networking and embedded virtualization require to change the configuration of the IVN at runtime. State-of-the-art IEEE Time-Sensitive Networking (TSN) standards possess a grave challenge in handling runtime reconfigurations. Above mentioned use-cases foster the development of scalable and efficient dynamic scheduling and routing algorithms for TSN based IVN. In this paper, four meticulously designed heuristics are analyzed for dynamic scheduling and routing on-the-fly in TSN based IVN. One of the algorithms, Bottleneck heuristic outperforms others in term of schedulability and response time. It schedules around 16 − 22% more flows as compared to other developed heuristics depending on the network load.\",\"PeriodicalId\":127186,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWorkshops50388.2021.9473810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

未来的自动驾驶汽车不仅要处理车载传感器产生的大量必不可少的数据,还要利用来自其他车辆、路边单元(RSU)等的数据。管理混合关键数据需要车载网络(IVN)基础设施中的智能时间敏感调度和路由。与自适应(包括车载通信)、部分网络和嵌入式虚拟化相关的用例需要在运行时更改IVN的配置。最新的IEEE时间敏感网络(TSN)标准在处理运行时重构方面面临着严峻的挑战。上述用例促进了基于TSN的IVN的可扩展和高效动态调度和路由算法的开发。本文分析了基于TSN的IVN中动态调度和动态路由的四种精心设计的启发式算法。瓶颈启发式算法在可调度性和响应时间方面优于其他算法。与其他开发的启发式算法相比,它根据网络负载多调度约16 - 22%的流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Scheduling and Routing for TSN based In-vehicle Networks
The future autonomous vehicle is not only processing the copious amount of indispensable data generated by its onboard sensors but also utilizing the data from other vehicles, roadside unit (RSU) etc. Managing the mixed-criticality data requires intelligent time-sensitive scheduling and routing within the in-vehicle network (IVN) infrastructure. Use-cases related to self-adaptivity (including vehicular communication), partial networking and embedded virtualization require to change the configuration of the IVN at runtime. State-of-the-art IEEE Time-Sensitive Networking (TSN) standards possess a grave challenge in handling runtime reconfigurations. Above mentioned use-cases foster the development of scalable and efficient dynamic scheduling and routing algorithms for TSN based IVN. In this paper, four meticulously designed heuristics are analyzed for dynamic scheduling and routing on-the-fly in TSN based IVN. One of the algorithms, Bottleneck heuristic outperforms others in term of schedulability and response time. It schedules around 16 − 22% more flows as compared to other developed heuristics depending on the network load.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BML: An Efficient and Versatile Tool for BGP Dataset Collection Efficient and Privacy-Preserving Contact Tracing System for Covid-19 using Blockchain MEC-Based Energy-Aware Distributed Feature Extraction for mHealth Applications with Strict Latency Requirements Distributed Multi-Agent Learning for Service Function Chain Partial Offloading at the Edge A Deep Neural Network Based Environment Sensing in the Presence of Jammers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1