梯度方法在矩阵学习向量量化中的经验评价

Michael LeKander, Michael Biehl, Harm de Vries
{"title":"梯度方法在矩阵学习向量量化中的经验评价","authors":"Michael LeKander, Michael Biehl, Harm de Vries","doi":"10.1109/WSOM.2017.8020027","DOIUrl":null,"url":null,"abstract":"Generalized Matrix Learning Vector Quantization (GMLVQ) critically relies on the use of an optimization algorithm to train its model parameters. We test various schemes for automated control of learning rates in gradient-based training. We evaluate these algorithms in terms of their achieved performance and their practical feasibility. We find that some algorithms do indeed perform better than others across multiple benchmark datasets. These algorithms produce GMLVQ models which not only better fit the training data, but also perform better upon validation. In particular, we find that the Variance-based Stochastic Gradient Descent algorithm consistently performs best across all experiments.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Empirical evaluation of gradient methods for matrix learning vector quantization\",\"authors\":\"Michael LeKander, Michael Biehl, Harm de Vries\",\"doi\":\"10.1109/WSOM.2017.8020027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized Matrix Learning Vector Quantization (GMLVQ) critically relies on the use of an optimization algorithm to train its model parameters. We test various schemes for automated control of learning rates in gradient-based training. We evaluate these algorithms in terms of their achieved performance and their practical feasibility. We find that some algorithms do indeed perform better than others across multiple benchmark datasets. These algorithms produce GMLVQ models which not only better fit the training data, but also perform better upon validation. In particular, we find that the Variance-based Stochastic Gradient Descent algorithm consistently performs best across all experiments.\",\"PeriodicalId\":130086,\"journal\":{\"name\":\"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSOM.2017.8020027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

广义矩阵学习向量量化(GMLVQ)主要依赖于使用优化算法来训练其模型参数。在基于梯度的训练中,我们测试了各种自动控制学习率的方案。我们对这些算法的性能和实际可行性进行了评估。我们发现,在多个基准数据集上,一些算法确实比其他算法表现得更好。这些算法产生的GMLVQ模型不仅能更好地拟合训练数据,而且在验证时也表现得更好。特别是,我们发现基于方差的随机梯度下降算法在所有实验中始终表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Empirical evaluation of gradient methods for matrix learning vector quantization
Generalized Matrix Learning Vector Quantization (GMLVQ) critically relies on the use of an optimization algorithm to train its model parameters. We test various schemes for automated control of learning rates in gradient-based training. We evaluate these algorithms in terms of their achieved performance and their practical feasibility. We find that some algorithms do indeed perform better than others across multiple benchmark datasets. These algorithms produce GMLVQ models which not only better fit the training data, but also perform better upon validation. In particular, we find that the Variance-based Stochastic Gradient Descent algorithm consistently performs best across all experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of gradient methods for matrix learning vector quantization Fusion of deep learning architectures, multilayer feedforward networks and learning vector quantizers for deep classification learning Prototypes and matrix relevance learning in complex fourier space Imputation of reactive silica and available alumina in bauxites by self-organizing maps An evolutionary building algorithm for Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1