G. Dubroca, M. Richert, Didier Loiseaux, J. Caron, J. Bézy
{"title":"用于空间应用的晶体偏振扰频器的设计和验证的最新进展","authors":"G. Dubroca, M. Richert, Didier Loiseaux, J. Caron, J. Bézy","doi":"10.1117/12.2191226","DOIUrl":null,"url":null,"abstract":"To increase the accuracy of earth-observation spectro-imagers, it is necessary to achieve high levels of depolarization of the incoming beam. The preferred device in space instrument is the so-called polarization scrambler. It is made of birefringent crystal wedges arranged in a single or dual Babinet. Today, with required radiometric accuracies of the order of 0.1%, it is necessary to develop tools to find optimal and low sensitivity solutions quickly and to measure the performances with a high level of accuracy.","PeriodicalId":212434,"journal":{"name":"SPIE Optical Systems Design","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent developments in the design and verification of crystalline polarization scramblers for space applications\",\"authors\":\"G. Dubroca, M. Richert, Didier Loiseaux, J. Caron, J. Bézy\",\"doi\":\"10.1117/12.2191226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To increase the accuracy of earth-observation spectro-imagers, it is necessary to achieve high levels of depolarization of the incoming beam. The preferred device in space instrument is the so-called polarization scrambler. It is made of birefringent crystal wedges arranged in a single or dual Babinet. Today, with required radiometric accuracies of the order of 0.1%, it is necessary to develop tools to find optimal and low sensitivity solutions quickly and to measure the performances with a high level of accuracy.\",\"PeriodicalId\":212434,\"journal\":{\"name\":\"SPIE Optical Systems Design\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optical Systems Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2191226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optical Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2191226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent developments in the design and verification of crystalline polarization scramblers for space applications
To increase the accuracy of earth-observation spectro-imagers, it is necessary to achieve high levels of depolarization of the incoming beam. The preferred device in space instrument is the so-called polarization scrambler. It is made of birefringent crystal wedges arranged in a single or dual Babinet. Today, with required radiometric accuracies of the order of 0.1%, it is necessary to develop tools to find optimal and low sensitivity solutions quickly and to measure the performances with a high level of accuracy.