Pedro Suárez-Casal, Ángel Carro-Lagoa, J. García-Naya, L. Castedo
{"title":"一种可重构WiMAX下行链路的多核SDR体系结构","authors":"Pedro Suárez-Casal, Ángel Carro-Lagoa, J. García-Naya, L. Castedo","doi":"10.1109/DSD.2010.108","DOIUrl":null,"url":null,"abstract":"This paper describes a multicore Software Defined Radio (SDR) architecture devised to implement a fully reconfigurable downlink for WiMAX transceivers. The proposed architecture is made up of Commercial-Off-The-Shelf (COTS) modules available in the market and includes a DSP, three different models of FPGAs, DACs and ADCs. We show that the architecture is capable of supporting all the functionalities of the downlink sub frame of the Orthogonal Frequency Division Multiple Access (OFDMA) WiMAX physical layer, including Partial Usage of Sub carriers (PUSC) symbol structure and Forward Error Correction (FEC). The primary advantage of the design is the full reconfigurability at different levels: bandwidth, size of the FFT, modulation, code rate, etc. without modifying or restarting the system. We show that the five downlink profiles defined by the WiMAX Forum can be successfully implemented with the proposed achitecture.","PeriodicalId":356885,"journal":{"name":"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Multicore SDR Architecture for Reconfigurable WiMAX Downlink\",\"authors\":\"Pedro Suárez-Casal, Ángel Carro-Lagoa, J. García-Naya, L. Castedo\",\"doi\":\"10.1109/DSD.2010.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a multicore Software Defined Radio (SDR) architecture devised to implement a fully reconfigurable downlink for WiMAX transceivers. The proposed architecture is made up of Commercial-Off-The-Shelf (COTS) modules available in the market and includes a DSP, three different models of FPGAs, DACs and ADCs. We show that the architecture is capable of supporting all the functionalities of the downlink sub frame of the Orthogonal Frequency Division Multiple Access (OFDMA) WiMAX physical layer, including Partial Usage of Sub carriers (PUSC) symbol structure and Forward Error Correction (FEC). The primary advantage of the design is the full reconfigurability at different levels: bandwidth, size of the FFT, modulation, code rate, etc. without modifying or restarting the system. We show that the five downlink profiles defined by the WiMAX Forum can be successfully implemented with the proposed achitecture.\",\"PeriodicalId\":356885,\"journal\":{\"name\":\"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD.2010.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2010.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multicore SDR Architecture for Reconfigurable WiMAX Downlink
This paper describes a multicore Software Defined Radio (SDR) architecture devised to implement a fully reconfigurable downlink for WiMAX transceivers. The proposed architecture is made up of Commercial-Off-The-Shelf (COTS) modules available in the market and includes a DSP, three different models of FPGAs, DACs and ADCs. We show that the architecture is capable of supporting all the functionalities of the downlink sub frame of the Orthogonal Frequency Division Multiple Access (OFDMA) WiMAX physical layer, including Partial Usage of Sub carriers (PUSC) symbol structure and Forward Error Correction (FEC). The primary advantage of the design is the full reconfigurability at different levels: bandwidth, size of the FFT, modulation, code rate, etc. without modifying or restarting the system. We show that the five downlink profiles defined by the WiMAX Forum can be successfully implemented with the proposed achitecture.