{"title":"使用共振隧道多值电路的Flash模数转换器","authors":"T. Waho, K. Hattori, Y. Takamatsu","doi":"10.1109/ISMVL.2001.924560","DOIUrl":null,"url":null,"abstract":"We have proposed a flash analog-to-digital converter (ADC) that uses resonant-tunneling complex gates not only as ternary quantizers but also as ternary-to-binary encoder circuits. The ternary quantizers, consisting of monostable-to-multistable transition logic (MML) circuits, convert the analog input signal into the ternary thermometer code. This code is then converted into the binary Gray-code output by a multiple-valued, multiple-input monostable-to-bistable transition logic element (M/sup 2/-MOBILE). By assuming InP-based resonant-tunneling diodes and heterojunction field-effect transistors, we have carried out SPICE simulation that demonstrates ultrahigh-speed ADC operation at a clock frequency of 5 GHz. Compact circuit configuration, which is due to the combination of MML and M/sup 2/-MOBILE, reduces the device count and power dissipation by a factor of two compared with previous RTD-based ADCs.","PeriodicalId":297353,"journal":{"name":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Flash analog-to-digital converter using resonant-tunneling multiple-valued circuits\",\"authors\":\"T. Waho, K. Hattori, Y. Takamatsu\",\"doi\":\"10.1109/ISMVL.2001.924560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have proposed a flash analog-to-digital converter (ADC) that uses resonant-tunneling complex gates not only as ternary quantizers but also as ternary-to-binary encoder circuits. The ternary quantizers, consisting of monostable-to-multistable transition logic (MML) circuits, convert the analog input signal into the ternary thermometer code. This code is then converted into the binary Gray-code output by a multiple-valued, multiple-input monostable-to-bistable transition logic element (M/sup 2/-MOBILE). By assuming InP-based resonant-tunneling diodes and heterojunction field-effect transistors, we have carried out SPICE simulation that demonstrates ultrahigh-speed ADC operation at a clock frequency of 5 GHz. Compact circuit configuration, which is due to the combination of MML and M/sup 2/-MOBILE, reduces the device count and power dissipation by a factor of two compared with previous RTD-based ADCs.\",\"PeriodicalId\":297353,\"journal\":{\"name\":\"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2001.924560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2001.924560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flash analog-to-digital converter using resonant-tunneling multiple-valued circuits
We have proposed a flash analog-to-digital converter (ADC) that uses resonant-tunneling complex gates not only as ternary quantizers but also as ternary-to-binary encoder circuits. The ternary quantizers, consisting of monostable-to-multistable transition logic (MML) circuits, convert the analog input signal into the ternary thermometer code. This code is then converted into the binary Gray-code output by a multiple-valued, multiple-input monostable-to-bistable transition logic element (M/sup 2/-MOBILE). By assuming InP-based resonant-tunneling diodes and heterojunction field-effect transistors, we have carried out SPICE simulation that demonstrates ultrahigh-speed ADC operation at a clock frequency of 5 GHz. Compact circuit configuration, which is due to the combination of MML and M/sup 2/-MOBILE, reduces the device count and power dissipation by a factor of two compared with previous RTD-based ADCs.