基于谓词抽象的神经网络动作策略验证

Marcel Vinzent, Marcel Steinmetz, Jörg Hoffmann
{"title":"基于谓词抽象的神经网络动作策略验证","authors":"Marcel Vinzent, Marcel Steinmetz, Jörg Hoffmann","doi":"10.1609/icaps.v32i1.19822","DOIUrl":null,"url":null,"abstract":"Neural networks (NN) are an increasingly important representation of action policies. Verifying that such policies are safe is potentially very hard as it compounds the state space explosion with the difficulty of analyzing even single NN decision episodes. Here we address that challenge through abstract reachability analysis. We show how to compute predicate abstractions of the policy state space subgraph induced by fixing an NN action policy. A key sub-problem here is the computation of abstract state transitions that may be taken by the policy, which as we show can be tackled by connecting to off-the-shelf SMT solvers. We devise a range of algorithmic enhancements, leveraging relaxed tests to avoid costly calls to SMT. We empirically evaluate the resulting machinery on a collection of benchmarks. The results show that our enhancements are required for practicality, and that our approach can outperform two competing approaches based on explicit enumeration and bounded-length verification.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Neural Network Action Policy Verification via Predicate Abstraction\",\"authors\":\"Marcel Vinzent, Marcel Steinmetz, Jörg Hoffmann\",\"doi\":\"10.1609/icaps.v32i1.19822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks (NN) are an increasingly important representation of action policies. Verifying that such policies are safe is potentially very hard as it compounds the state space explosion with the difficulty of analyzing even single NN decision episodes. Here we address that challenge through abstract reachability analysis. We show how to compute predicate abstractions of the policy state space subgraph induced by fixing an NN action policy. A key sub-problem here is the computation of abstract state transitions that may be taken by the policy, which as we show can be tackled by connecting to off-the-shelf SMT solvers. We devise a range of algorithmic enhancements, leveraging relaxed tests to avoid costly calls to SMT. We empirically evaluate the resulting machinery on a collection of benchmarks. The results show that our enhancements are required for practicality, and that our approach can outperform two competing approaches based on explicit enumeration and bounded-length verification.\",\"PeriodicalId\":239898,\"journal\":{\"name\":\"International Conference on Automated Planning and Scheduling\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Automated Planning and Scheduling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icaps.v32i1.19822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

神经网络(NN)是行动策略的一种越来越重要的表现形式。验证这些策略的安全性可能非常困难,因为它将状态空间爆炸与分析单个NN决策集的难度相结合。在这里,我们通过抽象的可达性分析来解决这个挑战。我们展示了如何计算由固定一个神经网络动作策略引起的策略状态空间子图的谓词抽象。这里的一个关键子问题是策略可能采取的抽象状态转换的计算,正如我们所展示的,可以通过连接到现成的SMT求解器来解决这个问题。我们设计了一系列算法增强,利用宽松的测试来避免昂贵的SMT调用。我们在一组基准上对产生的机器进行经验评估。结果表明,我们的改进是实用性所必需的,并且我们的方法可以优于基于显式枚举和有界长度验证的两种竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Network Action Policy Verification via Predicate Abstraction
Neural networks (NN) are an increasingly important representation of action policies. Verifying that such policies are safe is potentially very hard as it compounds the state space explosion with the difficulty of analyzing even single NN decision episodes. Here we address that challenge through abstract reachability analysis. We show how to compute predicate abstractions of the policy state space subgraph induced by fixing an NN action policy. A key sub-problem here is the computation of abstract state transitions that may be taken by the policy, which as we show can be tackled by connecting to off-the-shelf SMT solvers. We devise a range of algorithmic enhancements, leveraging relaxed tests to avoid costly calls to SMT. We empirically evaluate the resulting machinery on a collection of benchmarks. The results show that our enhancements are required for practicality, and that our approach can outperform two competing approaches based on explicit enumeration and bounded-length verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Robust Resource-Constrained Scheduling with Graph Neural Networks Solving the Multi-Choice Two Dimensional Shelf Strip Packing Problem with Time Windows Generalizing Action Justification and Causal Links to Policies Exact Anytime Multi-Agent Path Finding Using Branch-and-Cut-and-Price and Large Neighborhood Search A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1