采用条件熵正则化的n元最大熵语言模型

A. Rastrow, Mark Dredze, S. Khudanpur
{"title":"采用条件熵正则化的n元最大熵语言模型","authors":"A. Rastrow, Mark Dredze, S. Khudanpur","doi":"10.1109/ASRU.2011.6163934","DOIUrl":null,"url":null,"abstract":"Accurate estimates of language model parameters are critical for building quality text generation systems, such as automatic speech recognition. However, text training data for a domain of interest is often unavailable. Instead, we use semi-supervised model adaptation; parameters are estimated using both unlabeled in-domain data (raw speech audio) and labeled out of domain data (text.) In this work, we present a new semi-supervised language model adaptation procedure for Maximum Entropy models with n-gram features. We augment the conventional maximum likelihood training criterion on out-of-domain text data with an additional term to minimize conditional entropy on in-domain audio. Additionally, we demonstrate how to compute conditional entropy efficiently on speech lattices using first- and second-order expectation semirings. We demonstrate improvements in terms of word error rate over other adaptation techniques when adapting a maximum entropy language model from broadcast news to MIT lectures.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adapting n-gram maximum entropy language models with conditional entropy regularization\",\"authors\":\"A. Rastrow, Mark Dredze, S. Khudanpur\",\"doi\":\"10.1109/ASRU.2011.6163934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate estimates of language model parameters are critical for building quality text generation systems, such as automatic speech recognition. However, text training data for a domain of interest is often unavailable. Instead, we use semi-supervised model adaptation; parameters are estimated using both unlabeled in-domain data (raw speech audio) and labeled out of domain data (text.) In this work, we present a new semi-supervised language model adaptation procedure for Maximum Entropy models with n-gram features. We augment the conventional maximum likelihood training criterion on out-of-domain text data with an additional term to minimize conditional entropy on in-domain audio. Additionally, we demonstrate how to compute conditional entropy efficiently on speech lattices using first- and second-order expectation semirings. We demonstrate improvements in terms of word error rate over other adaptation techniques when adapting a maximum entropy language model from broadcast news to MIT lectures.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

语言模型参数的准确估计对于构建高质量的文本生成系统(如自动语音识别)至关重要。然而,感兴趣的领域的文本训练数据通常是不可用的。相反,我们使用半监督模型自适应;使用未标记的域内数据(原始语音音频)和标记的域外数据(文本)来估计参数。在这项工作中,我们提出了一种新的半监督语言模型自适应过程,用于具有n-gram特征的最大熵模型。我们在域外文本数据的基础上增加了一个附加项,以最小化域内音频的条件熵。此外,我们还演示了如何使用一阶和二阶期望半环在语音格上有效地计算条件熵。当将最大熵语言模型从广播新闻改编到MIT讲座时,我们展示了在单词错误率方面比其他自适应技术的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adapting n-gram maximum entropy language models with conditional entropy regularization
Accurate estimates of language model parameters are critical for building quality text generation systems, such as automatic speech recognition. However, text training data for a domain of interest is often unavailable. Instead, we use semi-supervised model adaptation; parameters are estimated using both unlabeled in-domain data (raw speech audio) and labeled out of domain data (text.) In this work, we present a new semi-supervised language model adaptation procedure for Maximum Entropy models with n-gram features. We augment the conventional maximum likelihood training criterion on out-of-domain text data with an additional term to minimize conditional entropy on in-domain audio. Additionally, we demonstrate how to compute conditional entropy efficiently on speech lattices using first- and second-order expectation semirings. We demonstrate improvements in terms of word error rate over other adaptation techniques when adapting a maximum entropy language model from broadcast news to MIT lectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying feature bagging for more accurate and robust automated speaking assessment Towards choosing better primes for spoken dialog systems Accent level adjustment in bilingual Thai-English text-to-speech synthesis Fast speaker diarization using a high-level scripting language Evaluating prosodic features for automated scoring of non-native read speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1