{"title":"基于平均运动条纹流的暴力人群行为检测","authors":"Yin-Chang Zhou","doi":"10.1117/12.2667803","DOIUrl":null,"url":null,"abstract":"With the frequent occurrence of global security problems, violent crowd behavior endangers public security seriously. Meanwhile, intelligent surveillance video technology can be applied for violent crowd behavior detection as more and more surveillance cameras are installed in public and sensitive areas. In this paper, we propose a novel mean kinetic violent flow (MKViF) algorithm for violent crowd behavior detection by extracting the kinetic energy feature of video flow. Specifically, A is firstly calculating the mean kinetic energy by streak flow of each corner in each frame. Then, we obtain a binary indicator of kinetic energy change by calculating the amplitude change between sequence frames. Finally, the MKViF vector for a sequence of frames is obtained by averaging these binary indicators of each pixel in all frames. Experimental results show that the proposed MKViF algorithm behaves better in classification performance and real-time processing performance (45 frames per second) than the existing algorithms.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of violent crowd behavior based on mean kinetic streak flow\",\"authors\":\"Yin-Chang Zhou\",\"doi\":\"10.1117/12.2667803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the frequent occurrence of global security problems, violent crowd behavior endangers public security seriously. Meanwhile, intelligent surveillance video technology can be applied for violent crowd behavior detection as more and more surveillance cameras are installed in public and sensitive areas. In this paper, we propose a novel mean kinetic violent flow (MKViF) algorithm for violent crowd behavior detection by extracting the kinetic energy feature of video flow. Specifically, A is firstly calculating the mean kinetic energy by streak flow of each corner in each frame. Then, we obtain a binary indicator of kinetic energy change by calculating the amplitude change between sequence frames. Finally, the MKViF vector for a sequence of frames is obtained by averaging these binary indicators of each pixel in all frames. Experimental results show that the proposed MKViF algorithm behaves better in classification performance and real-time processing performance (45 frames per second) than the existing algorithms.\",\"PeriodicalId\":345723,\"journal\":{\"name\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2667803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of violent crowd behavior based on mean kinetic streak flow
With the frequent occurrence of global security problems, violent crowd behavior endangers public security seriously. Meanwhile, intelligent surveillance video technology can be applied for violent crowd behavior detection as more and more surveillance cameras are installed in public and sensitive areas. In this paper, we propose a novel mean kinetic violent flow (MKViF) algorithm for violent crowd behavior detection by extracting the kinetic energy feature of video flow. Specifically, A is firstly calculating the mean kinetic energy by streak flow of each corner in each frame. Then, we obtain a binary indicator of kinetic energy change by calculating the amplitude change between sequence frames. Finally, the MKViF vector for a sequence of frames is obtained by averaging these binary indicators of each pixel in all frames. Experimental results show that the proposed MKViF algorithm behaves better in classification performance and real-time processing performance (45 frames per second) than the existing algorithms.