利用MATLAB对变电站接地系统进行优化

Xuan Wu, Qianzhi Zhang, Jiahong He
{"title":"利用MATLAB对变电站接地系统进行优化","authors":"Xuan Wu, Qianzhi Zhang, Jiahong He","doi":"10.1109/APPEEC.2016.7779580","DOIUrl":null,"url":null,"abstract":"the aim of this work is to develop an application which has the capability of modeling and optimizing regular shape (rectangular, square or L shape) ground grids under a two-layer soil model. The ground grid optimal design is the focus of this paper by using a 3-step optimization method: 1) using IEEE-80 equations to calculate touch and step potentials, which makes constraints continuous and differentiable for gradient descent methods; 2) using the optimal solutions from step 1 as the initial input into a pattern search algorithm by applying a more accurate but non-differentiable touch and step potential calculation method; 3) performing a perturbation test to determine whether the results from step 2 are globally optimal, otherwise using a genetic algorithm to re-optimize the solution from step 2 until it passes the perturbation test.","PeriodicalId":117485,"journal":{"name":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substation grounding system optimization with utilizing a novel MATLAB application\",\"authors\":\"Xuan Wu, Qianzhi Zhang, Jiahong He\",\"doi\":\"10.1109/APPEEC.2016.7779580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"the aim of this work is to develop an application which has the capability of modeling and optimizing regular shape (rectangular, square or L shape) ground grids under a two-layer soil model. The ground grid optimal design is the focus of this paper by using a 3-step optimization method: 1) using IEEE-80 equations to calculate touch and step potentials, which makes constraints continuous and differentiable for gradient descent methods; 2) using the optimal solutions from step 1 as the initial input into a pattern search algorithm by applying a more accurate but non-differentiable touch and step potential calculation method; 3) performing a perturbation test to determine whether the results from step 2 are globally optimal, otherwise using a genetic algorithm to re-optimize the solution from step 2 until it passes the perturbation test.\",\"PeriodicalId\":117485,\"journal\":{\"name\":\"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2016.7779580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2016.7779580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本工作的目的是开发一种在两层土壤模型下具有规则形状(矩形、方形或L形)地网建模和优化能力的应用程序。采用3步优化方法对地网进行优化设计:1)利用IEEE-80方程计算触点电位和阶跃电位,使梯度下降法的约束条件连续可微;2)将步骤1的最优解作为模式搜索算法的初始输入,采用更精确但不可微的触摸和阶跃势计算方法;3)执行扰动测试,确定步骤2的结果是否全局最优,否则使用遗传算法重新优化步骤2的解,直到通过扰动测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Substation grounding system optimization with utilizing a novel MATLAB application
the aim of this work is to develop an application which has the capability of modeling and optimizing regular shape (rectangular, square or L shape) ground grids under a two-layer soil model. The ground grid optimal design is the focus of this paper by using a 3-step optimization method: 1) using IEEE-80 equations to calculate touch and step potentials, which makes constraints continuous and differentiable for gradient descent methods; 2) using the optimal solutions from step 1 as the initial input into a pattern search algorithm by applying a more accurate but non-differentiable touch and step potential calculation method; 3) performing a perturbation test to determine whether the results from step 2 are globally optimal, otherwise using a genetic algorithm to re-optimize the solution from step 2 until it passes the perturbation test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electric Vehicle charging management algorithm for a UK low-voltage residential distribution network An optimization model of EVs charging and discharging for power system demand leveling A circuit approach for the propagation analysis of voltage unbalance emission in power systems A novel high-power AC/AC modular multilevel converter in Y configuration and its control strategy Comprehensive optimization for power system with multiple HVDC infeed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1