对未骨折椎体的脊柱MRI分析评估骨脆弱性:传统机器学习与深度学习的比较

Jonathan S. Ramos, Erikson Júlio De Aguiar, Ivar Vargas Belizario, Márcus V. L. Costa, J. G. Maciel, M. Cazzolato, C. Traina, M. Nogueira-Barbosa, A. J. Traina
{"title":"对未骨折椎体的脊柱MRI分析评估骨脆弱性:传统机器学习与深度学习的比较","authors":"Jonathan S. Ramos, Erikson Júlio De Aguiar, Ivar Vargas Belizario, Márcus V. L. Costa, J. G. Maciel, M. Cazzolato, C. Traina, M. Nogueira-Barbosa, A. J. Traina","doi":"10.1109/CBMS55023.2022.00021","DOIUrl":null,"url":null,"abstract":"Bone mineral density (BMD) is the international standard for evaluating osteoporosis/osteopenia. The success rate of BMD alone in estimating the risk of vertebral fragility fracture (VFF) is approximately 50%, making BMD far from ideal in predicting VFF. In addition, whether or not a patient has been diagnosed with osteoporosis or osteopenia, he or she may suffer a VFF. For this reason, we conducted an extensive empirical study to assess VFFs in postmenopausal women. We considered a representative dataset of 94 T1- and T2-weighted routine spine MRI (with osteopenia or osteoporosis), split into 2,400 samples (slices). Comparing the classification results of machine learning and deep learning (DL) techniques showed that DL generally achieved better results at the cost of higher computational power and hard explainability. ResNet achieved the best results in discriminating patients from groups with and without VFFs with 83% accuracy and 90% AUC (with a confidence interval of 99%). Our results represent a significant step toward prospective and longitudinal studies investigating methods to achieve higher accuracy in predicting VFFs based on spine MRI features of vertebrae without fracture.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of vertebrae without fracture on spine MRI to assess bone fragility: A Comparison of Traditional Machine Learning and Deep Learning\",\"authors\":\"Jonathan S. Ramos, Erikson Júlio De Aguiar, Ivar Vargas Belizario, Márcus V. L. Costa, J. G. Maciel, M. Cazzolato, C. Traina, M. Nogueira-Barbosa, A. J. Traina\",\"doi\":\"10.1109/CBMS55023.2022.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bone mineral density (BMD) is the international standard for evaluating osteoporosis/osteopenia. The success rate of BMD alone in estimating the risk of vertebral fragility fracture (VFF) is approximately 50%, making BMD far from ideal in predicting VFF. In addition, whether or not a patient has been diagnosed with osteoporosis or osteopenia, he or she may suffer a VFF. For this reason, we conducted an extensive empirical study to assess VFFs in postmenopausal women. We considered a representative dataset of 94 T1- and T2-weighted routine spine MRI (with osteopenia or osteoporosis), split into 2,400 samples (slices). Comparing the classification results of machine learning and deep learning (DL) techniques showed that DL generally achieved better results at the cost of higher computational power and hard explainability. ResNet achieved the best results in discriminating patients from groups with and without VFFs with 83% accuracy and 90% AUC (with a confidence interval of 99%). Our results represent a significant step toward prospective and longitudinal studies investigating methods to achieve higher accuracy in predicting VFFs based on spine MRI features of vertebrae without fracture.\",\"PeriodicalId\":218475,\"journal\":{\"name\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS55023.2022.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

骨密度(BMD)是评估骨质疏松症/骨质减少症的国际标准。单靠BMD估计椎体脆性骨折(VFF)风险的成功率约为50%,因此BMD在预测VFF方面还远远不够理想。此外,无论患者是否被诊断为骨质疏松症或骨质减少症,他或她都可能患有VFF。因此,我们进行了广泛的实证研究来评估绝经后妇女的VFFs。我们考虑了94个T1和t2加权常规脊柱MRI(骨质减少或骨质疏松)的代表性数据集,分为2,400个样本(切片)。比较机器学习和深度学习(DL)技术的分类结果表明,DL通常以更高的计算能力和难解释性为代价获得更好的分类结果。ResNet在区分有和没有vff的患者方面取得了最好的结果,准确率为83%,AUC为90%(置信区间为99%)。我们的研究结果代表了前瞻性和纵向研究的重要一步,探讨了基于无骨折椎体的脊柱MRI特征来实现更高准确性预测vff的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of vertebrae without fracture on spine MRI to assess bone fragility: A Comparison of Traditional Machine Learning and Deep Learning
Bone mineral density (BMD) is the international standard for evaluating osteoporosis/osteopenia. The success rate of BMD alone in estimating the risk of vertebral fragility fracture (VFF) is approximately 50%, making BMD far from ideal in predicting VFF. In addition, whether or not a patient has been diagnosed with osteoporosis or osteopenia, he or she may suffer a VFF. For this reason, we conducted an extensive empirical study to assess VFFs in postmenopausal women. We considered a representative dataset of 94 T1- and T2-weighted routine spine MRI (with osteopenia or osteoporosis), split into 2,400 samples (slices). Comparing the classification results of machine learning and deep learning (DL) techniques showed that DL generally achieved better results at the cost of higher computational power and hard explainability. ResNet achieved the best results in discriminating patients from groups with and without VFFs with 83% accuracy and 90% AUC (with a confidence interval of 99%). Our results represent a significant step toward prospective and longitudinal studies investigating methods to achieve higher accuracy in predicting VFFs based on spine MRI features of vertebrae without fracture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1