埃塞俄比亚最常见蔬菜作物叶面积的非破坏性预测模型

M. Yeshitila, M. Taye
{"title":"埃塞俄比亚最常见蔬菜作物叶面积的非破坏性预测模型","authors":"M. Yeshitila, M. Taye","doi":"10.11648/J.SJAMS.20160405.13","DOIUrl":null,"url":null,"abstract":"Leaf area (LA) is a valuable key for evaluating plant growth, therefore rapid, accurate, simple, and nondestructive methods for LA determination are important for physiological and agronomic studies. The objective of this study was to develop a model for leaf area prediction from simple non-destructive measurements in some most commonly cultivated vegetable crops’ accessions in the country. A field experiment was carried out from May to August of 2014 at ‘Hawassa College of Agriculture’s research site, using ten selected most commonly grown vegetable species of Potato (Solanum tuberosum. L), Cabbage (Brassica campestris L.), Pepper (Capsicum annuum L.), Beetroot (Beta vulgaris), Swisschard (Beta vulgaris), Sweet potato (Ipomoea batatas L.), Snapbean (Vicia Snap L.) and Onion (Allium cepa). A standard method (LICOR LI-3000C) was also used for measuring the actual areas of the leaves. All equations produced for leaf area were derived as affected by leaf length and leaf width. As a result of ANOVA and multiple-regression analysis, it was found that there was close relationship between actual and predicted growth parameters. The produced leaf area prediction models in the present study are: AREA (cm2) = -16.882+2.533L (cm) + 4.5076W (cm) for Pepper Melka Awaze Variety. AREA (cm2) = -18.943+2.225L (cm) + 5.710W (cm) for Pepper Melka Zale Variety. AREA (cm2) = 136.8524 + 2.68L (cm) + 2.564W (cm) for Sweet-potato. AREA (cm2) = -193.518 + 8.633L (cm) + 14.018W (cm) for Beetroot. AREA (cm2) = -23.1534 + 1.1023L (cm) + 16.156W (cm) for Onion. AREA (cm2) = -260.265 + 27.115 (L (cm) * W (cm)) for Cabbage. AREA (cm2) = -422.973 + 22.752L (cm) + 8.31W (cm) for Swisschard. AREA (cm2) = 68.85 – 13.47L (cm) + 7.34W + 0.645L2 (cm) -0.012W2 (cm) for Snapbean. R2 values (0.989, 0.976, 0.917, 0.926, 0.924, 0.966, 0.917, and 0.966 for the pepper Melka Awaze Variety, Pepper Melka Zale Variety, Sweetpotato, Beetroot, Onion, Cabbage, Swisschard and Snapbean respectively) and standard errors for all subsets of the independent variables were found to be significant at the p<0.001 level.","PeriodicalId":422938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Non-destructive Prediction Models for Estimation of Leaf Area for Most Commonly Grown Vegetable Crops in Ethiopia\",\"authors\":\"M. Yeshitila, M. Taye\",\"doi\":\"10.11648/J.SJAMS.20160405.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leaf area (LA) is a valuable key for evaluating plant growth, therefore rapid, accurate, simple, and nondestructive methods for LA determination are important for physiological and agronomic studies. The objective of this study was to develop a model for leaf area prediction from simple non-destructive measurements in some most commonly cultivated vegetable crops’ accessions in the country. A field experiment was carried out from May to August of 2014 at ‘Hawassa College of Agriculture’s research site, using ten selected most commonly grown vegetable species of Potato (Solanum tuberosum. L), Cabbage (Brassica campestris L.), Pepper (Capsicum annuum L.), Beetroot (Beta vulgaris), Swisschard (Beta vulgaris), Sweet potato (Ipomoea batatas L.), Snapbean (Vicia Snap L.) and Onion (Allium cepa). A standard method (LICOR LI-3000C) was also used for measuring the actual areas of the leaves. All equations produced for leaf area were derived as affected by leaf length and leaf width. As a result of ANOVA and multiple-regression analysis, it was found that there was close relationship between actual and predicted growth parameters. The produced leaf area prediction models in the present study are: AREA (cm2) = -16.882+2.533L (cm) + 4.5076W (cm) for Pepper Melka Awaze Variety. AREA (cm2) = -18.943+2.225L (cm) + 5.710W (cm) for Pepper Melka Zale Variety. AREA (cm2) = 136.8524 + 2.68L (cm) + 2.564W (cm) for Sweet-potato. AREA (cm2) = -193.518 + 8.633L (cm) + 14.018W (cm) for Beetroot. AREA (cm2) = -23.1534 + 1.1023L (cm) + 16.156W (cm) for Onion. AREA (cm2) = -260.265 + 27.115 (L (cm) * W (cm)) for Cabbage. AREA (cm2) = -422.973 + 22.752L (cm) + 8.31W (cm) for Swisschard. AREA (cm2) = 68.85 – 13.47L (cm) + 7.34W + 0.645L2 (cm) -0.012W2 (cm) for Snapbean. R2 values (0.989, 0.976, 0.917, 0.926, 0.924, 0.966, 0.917, and 0.966 for the pepper Melka Awaze Variety, Pepper Melka Zale Variety, Sweetpotato, Beetroot, Onion, Cabbage, Swisschard and Snapbean respectively) and standard errors for all subsets of the independent variables were found to be significant at the p<0.001 level.\",\"PeriodicalId\":422938,\"journal\":{\"name\":\"Science Journal of Applied Mathematics and Statistics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Journal of Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.SJAMS.20160405.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJAMS.20160405.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

叶面积(LA)是评价植物生长的重要指标,因此快速、准确、简单、无损的测定方法对生理和农艺研究具有重要意义。本研究的目的是建立一个基于简单无损测量的叶面积预测模型,用于我国一些最常见的蔬菜作物材料的叶面积预测。2014年5月至8月,在哈瓦萨农业学院的研究基地进行了一项田间试验,选择了10种最常见的蔬菜马铃薯(Solanum tuberosum)。L)、白菜(Brassica campestris L.)、辣椒(Capsicum annuum L.)、甜菜根(Beta vulgaris)、瑞士菜(Beta vulgaris)、甘薯(Ipomoea batatas L.)、蚕豆(Vicia Snap L.)和洋葱(Allium cepa)。用标准方法(LICOR LI-3000C)测量叶片的实际面积。所有叶面积方程均受叶长和叶宽的影响。方差分析和多元回归分析发现,实际增长参数与预测增长参数之间存在密切的关系。本研究建立的叶面积预测模型为:甜椒品种叶面积(cm2) = -16.882+2.533L (cm) + 4.5076W (cm)。Melka Zale辣椒品种面积(cm2) = -18.943+2.225L (cm) + 5.710W (cm)红薯面积(平方厘米)= 136.8524 + 2.68L(厘米)+ 2.564W(厘米)。甜菜根面积(cm2) = -193.518 + 8.633L (cm) + 14.018W (cm)面积(cm2) = -23.1534 + 1.1023L (cm) + 16.156W (cm)面积(cm2) = -260.265 + 27.115 (L (cm) * W (cm))面积(cm2) = -422.973 + 22.752L (cm) + 8.31W (cm)。面积(cm2) = 68.85 - 13.47L (cm) + 7.34W + 0.645L2 (cm) -0.012 w2 (cm)各自变量亚集的R2值(分别为0.989、0.976、0.917、0.926、0.924、0.966、0.917和0.966)和标准误差在p<0.001水平上均显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-destructive Prediction Models for Estimation of Leaf Area for Most Commonly Grown Vegetable Crops in Ethiopia
Leaf area (LA) is a valuable key for evaluating plant growth, therefore rapid, accurate, simple, and nondestructive methods for LA determination are important for physiological and agronomic studies. The objective of this study was to develop a model for leaf area prediction from simple non-destructive measurements in some most commonly cultivated vegetable crops’ accessions in the country. A field experiment was carried out from May to August of 2014 at ‘Hawassa College of Agriculture’s research site, using ten selected most commonly grown vegetable species of Potato (Solanum tuberosum. L), Cabbage (Brassica campestris L.), Pepper (Capsicum annuum L.), Beetroot (Beta vulgaris), Swisschard (Beta vulgaris), Sweet potato (Ipomoea batatas L.), Snapbean (Vicia Snap L.) and Onion (Allium cepa). A standard method (LICOR LI-3000C) was also used for measuring the actual areas of the leaves. All equations produced for leaf area were derived as affected by leaf length and leaf width. As a result of ANOVA and multiple-regression analysis, it was found that there was close relationship between actual and predicted growth parameters. The produced leaf area prediction models in the present study are: AREA (cm2) = -16.882+2.533L (cm) + 4.5076W (cm) for Pepper Melka Awaze Variety. AREA (cm2) = -18.943+2.225L (cm) + 5.710W (cm) for Pepper Melka Zale Variety. AREA (cm2) = 136.8524 + 2.68L (cm) + 2.564W (cm) for Sweet-potato. AREA (cm2) = -193.518 + 8.633L (cm) + 14.018W (cm) for Beetroot. AREA (cm2) = -23.1534 + 1.1023L (cm) + 16.156W (cm) for Onion. AREA (cm2) = -260.265 + 27.115 (L (cm) * W (cm)) for Cabbage. AREA (cm2) = -422.973 + 22.752L (cm) + 8.31W (cm) for Swisschard. AREA (cm2) = 68.85 – 13.47L (cm) + 7.34W + 0.645L2 (cm) -0.012W2 (cm) for Snapbean. R2 values (0.989, 0.976, 0.917, 0.926, 0.924, 0.966, 0.917, and 0.966 for the pepper Melka Awaze Variety, Pepper Melka Zale Variety, Sweetpotato, Beetroot, Onion, Cabbage, Swisschard and Snapbean respectively) and standard errors for all subsets of the independent variables were found to be significant at the p<0.001 level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of the Non-Linear Diffussion Equations CPV Monitoring - Optimization of Control Chart Design by Reducing the False Alarm Rate and Nuisance Signal On Different Extraction Methods of Factor Analysis Improvement of the Raabe-Duhamel Convergence Criterion Generalized Volatility Modelling of Stock Returns of Selected Nigerian Oil and Gas Companies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1