{"title":"埃塞俄比亚最常见蔬菜作物叶面积的非破坏性预测模型","authors":"M. Yeshitila, M. Taye","doi":"10.11648/J.SJAMS.20160405.13","DOIUrl":null,"url":null,"abstract":"Leaf area (LA) is a valuable key for evaluating plant growth, therefore rapid, accurate, simple, and nondestructive methods for LA determination are important for physiological and agronomic studies. The objective of this study was to develop a model for leaf area prediction from simple non-destructive measurements in some most commonly cultivated vegetable crops’ accessions in the country. A field experiment was carried out from May to August of 2014 at ‘Hawassa College of Agriculture’s research site, using ten selected most commonly grown vegetable species of Potato (Solanum tuberosum. L), Cabbage (Brassica campestris L.), Pepper (Capsicum annuum L.), Beetroot (Beta vulgaris), Swisschard (Beta vulgaris), Sweet potato (Ipomoea batatas L.), Snapbean (Vicia Snap L.) and Onion (Allium cepa). A standard method (LICOR LI-3000C) was also used for measuring the actual areas of the leaves. All equations produced for leaf area were derived as affected by leaf length and leaf width. As a result of ANOVA and multiple-regression analysis, it was found that there was close relationship between actual and predicted growth parameters. The produced leaf area prediction models in the present study are: AREA (cm2) = -16.882+2.533L (cm) + 4.5076W (cm) for Pepper Melka Awaze Variety. AREA (cm2) = -18.943+2.225L (cm) + 5.710W (cm) for Pepper Melka Zale Variety. AREA (cm2) = 136.8524 + 2.68L (cm) + 2.564W (cm) for Sweet-potato. AREA (cm2) = -193.518 + 8.633L (cm) + 14.018W (cm) for Beetroot. AREA (cm2) = -23.1534 + 1.1023L (cm) + 16.156W (cm) for Onion. AREA (cm2) = -260.265 + 27.115 (L (cm) * W (cm)) for Cabbage. AREA (cm2) = -422.973 + 22.752L (cm) + 8.31W (cm) for Swisschard. AREA (cm2) = 68.85 – 13.47L (cm) + 7.34W + 0.645L2 (cm) -0.012W2 (cm) for Snapbean. R2 values (0.989, 0.976, 0.917, 0.926, 0.924, 0.966, 0.917, and 0.966 for the pepper Melka Awaze Variety, Pepper Melka Zale Variety, Sweetpotato, Beetroot, Onion, Cabbage, Swisschard and Snapbean respectively) and standard errors for all subsets of the independent variables were found to be significant at the p<0.001 level.","PeriodicalId":422938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Non-destructive Prediction Models for Estimation of Leaf Area for Most Commonly Grown Vegetable Crops in Ethiopia\",\"authors\":\"M. Yeshitila, M. Taye\",\"doi\":\"10.11648/J.SJAMS.20160405.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leaf area (LA) is a valuable key for evaluating plant growth, therefore rapid, accurate, simple, and nondestructive methods for LA determination are important for physiological and agronomic studies. The objective of this study was to develop a model for leaf area prediction from simple non-destructive measurements in some most commonly cultivated vegetable crops’ accessions in the country. A field experiment was carried out from May to August of 2014 at ‘Hawassa College of Agriculture’s research site, using ten selected most commonly grown vegetable species of Potato (Solanum tuberosum. L), Cabbage (Brassica campestris L.), Pepper (Capsicum annuum L.), Beetroot (Beta vulgaris), Swisschard (Beta vulgaris), Sweet potato (Ipomoea batatas L.), Snapbean (Vicia Snap L.) and Onion (Allium cepa). A standard method (LICOR LI-3000C) was also used for measuring the actual areas of the leaves. All equations produced for leaf area were derived as affected by leaf length and leaf width. As a result of ANOVA and multiple-regression analysis, it was found that there was close relationship between actual and predicted growth parameters. The produced leaf area prediction models in the present study are: AREA (cm2) = -16.882+2.533L (cm) + 4.5076W (cm) for Pepper Melka Awaze Variety. AREA (cm2) = -18.943+2.225L (cm) + 5.710W (cm) for Pepper Melka Zale Variety. AREA (cm2) = 136.8524 + 2.68L (cm) + 2.564W (cm) for Sweet-potato. AREA (cm2) = -193.518 + 8.633L (cm) + 14.018W (cm) for Beetroot. AREA (cm2) = -23.1534 + 1.1023L (cm) + 16.156W (cm) for Onion. AREA (cm2) = -260.265 + 27.115 (L (cm) * W (cm)) for Cabbage. AREA (cm2) = -422.973 + 22.752L (cm) + 8.31W (cm) for Swisschard. AREA (cm2) = 68.85 – 13.47L (cm) + 7.34W + 0.645L2 (cm) -0.012W2 (cm) for Snapbean. R2 values (0.989, 0.976, 0.917, 0.926, 0.924, 0.966, 0.917, and 0.966 for the pepper Melka Awaze Variety, Pepper Melka Zale Variety, Sweetpotato, Beetroot, Onion, Cabbage, Swisschard and Snapbean respectively) and standard errors for all subsets of the independent variables were found to be significant at the p<0.001 level.\",\"PeriodicalId\":422938,\"journal\":{\"name\":\"Science Journal of Applied Mathematics and Statistics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Journal of Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.SJAMS.20160405.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJAMS.20160405.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-destructive Prediction Models for Estimation of Leaf Area for Most Commonly Grown Vegetable Crops in Ethiopia
Leaf area (LA) is a valuable key for evaluating plant growth, therefore rapid, accurate, simple, and nondestructive methods for LA determination are important for physiological and agronomic studies. The objective of this study was to develop a model for leaf area prediction from simple non-destructive measurements in some most commonly cultivated vegetable crops’ accessions in the country. A field experiment was carried out from May to August of 2014 at ‘Hawassa College of Agriculture’s research site, using ten selected most commonly grown vegetable species of Potato (Solanum tuberosum. L), Cabbage (Brassica campestris L.), Pepper (Capsicum annuum L.), Beetroot (Beta vulgaris), Swisschard (Beta vulgaris), Sweet potato (Ipomoea batatas L.), Snapbean (Vicia Snap L.) and Onion (Allium cepa). A standard method (LICOR LI-3000C) was also used for measuring the actual areas of the leaves. All equations produced for leaf area were derived as affected by leaf length and leaf width. As a result of ANOVA and multiple-regression analysis, it was found that there was close relationship between actual and predicted growth parameters. The produced leaf area prediction models in the present study are: AREA (cm2) = -16.882+2.533L (cm) + 4.5076W (cm) for Pepper Melka Awaze Variety. AREA (cm2) = -18.943+2.225L (cm) + 5.710W (cm) for Pepper Melka Zale Variety. AREA (cm2) = 136.8524 + 2.68L (cm) + 2.564W (cm) for Sweet-potato. AREA (cm2) = -193.518 + 8.633L (cm) + 14.018W (cm) for Beetroot. AREA (cm2) = -23.1534 + 1.1023L (cm) + 16.156W (cm) for Onion. AREA (cm2) = -260.265 + 27.115 (L (cm) * W (cm)) for Cabbage. AREA (cm2) = -422.973 + 22.752L (cm) + 8.31W (cm) for Swisschard. AREA (cm2) = 68.85 – 13.47L (cm) + 7.34W + 0.645L2 (cm) -0.012W2 (cm) for Snapbean. R2 values (0.989, 0.976, 0.917, 0.926, 0.924, 0.966, 0.917, and 0.966 for the pepper Melka Awaze Variety, Pepper Melka Zale Variety, Sweetpotato, Beetroot, Onion, Cabbage, Swisschard and Snapbean respectively) and standard errors for all subsets of the independent variables were found to be significant at the p<0.001 level.