{"title":"数据集特征对选择稳定性的影响","authors":"Salem Alelyani, Huan Liu, Lei Wang","doi":"10.1109/ICTAI.2011.167","DOIUrl":null,"url":null,"abstract":"Feature selection is an effective technique to reduce the dimensionality of a data set and to select relevant features for the domain problem. Recently, stability of feature selection methods has gained increasing attention. In fact, it has become a crucial factor in determining the goodness of a feature selection algorithm besides the learning performance. In this work, we conduct an extensive experimental study using verity of data sets and different well-known feature selection algorithms in order to study the behavior of these algorithms in terms of the stability.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"The Effect of the Characteristics of the Dataset on the Selection Stability\",\"authors\":\"Salem Alelyani, Huan Liu, Lei Wang\",\"doi\":\"10.1109/ICTAI.2011.167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is an effective technique to reduce the dimensionality of a data set and to select relevant features for the domain problem. Recently, stability of feature selection methods has gained increasing attention. In fact, it has become a crucial factor in determining the goodness of a feature selection algorithm besides the learning performance. In this work, we conduct an extensive experimental study using verity of data sets and different well-known feature selection algorithms in order to study the behavior of these algorithms in terms of the stability.\",\"PeriodicalId\":332661,\"journal\":{\"name\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2011.167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Effect of the Characteristics of the Dataset on the Selection Stability
Feature selection is an effective technique to reduce the dimensionality of a data set and to select relevant features for the domain problem. Recently, stability of feature selection methods has gained increasing attention. In fact, it has become a crucial factor in determining the goodness of a feature selection algorithm besides the learning performance. In this work, we conduct an extensive experimental study using verity of data sets and different well-known feature selection algorithms in order to study the behavior of these algorithms in terms of the stability.