粗粒度工作流网格调度的非逼近性研究

N. Fujimoto
{"title":"粗粒度工作流网格调度的非逼近性研究","authors":"N. Fujimoto","doi":"10.1109/I-SPAN.2008.35","DOIUrl":null,"url":null,"abstract":"Scheduling a scientific workflow onto a computational grid is considered. A computational grid can be regarded as a heterogeneous parallel machine such that the speed of each processor varies over time. A scientific workflow can be modeled as a DAG of tasks. This paper focuses on a coarse-grained workflow. So, any communication delay between tasks is negligible because computation time of every task is much longer than the corresponding communication delay. Hence, in this paper, a coarse-grained workflow grid scheduling problem (WSP for short) is defined as an extension of the classical precedence constrained scheduling problem over a uniform parallel machine with processor speed fluctuation. The objective of our problem is to minimize the makespan of a schedule. It is known that no approximation algorithm exist if a grid has a very long period with zero spare computing power. However, such situation seems to be unrealistic. This paper gives a proof that, unless P = NP, WSP is not approximable within a factor of 1.5 even if accurate performance prediction is possible, all processors have the same peak speed, and speed of every processor at any time is restricted to either 50% or 100% of the peak speed. Since the quite restricted problem is not approximable, any more general problem such that accurate performance prediction is impossible and/or processor speed fluctuation pattern is not restricted is also not approximable. So, the proof implies that WSP is not approximable within a factor of 1.5 in realistic grid environment unless P = NP.","PeriodicalId":305776,"journal":{"name":"2008 International Symposium on Parallel Architectures, Algorithms, and Networks (i-span 2008)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Non-Approximability of Coarse-Grained Workflow Grid Scheduling\",\"authors\":\"N. Fujimoto\",\"doi\":\"10.1109/I-SPAN.2008.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scheduling a scientific workflow onto a computational grid is considered. A computational grid can be regarded as a heterogeneous parallel machine such that the speed of each processor varies over time. A scientific workflow can be modeled as a DAG of tasks. This paper focuses on a coarse-grained workflow. So, any communication delay between tasks is negligible because computation time of every task is much longer than the corresponding communication delay. Hence, in this paper, a coarse-grained workflow grid scheduling problem (WSP for short) is defined as an extension of the classical precedence constrained scheduling problem over a uniform parallel machine with processor speed fluctuation. The objective of our problem is to minimize the makespan of a schedule. It is known that no approximation algorithm exist if a grid has a very long period with zero spare computing power. However, such situation seems to be unrealistic. This paper gives a proof that, unless P = NP, WSP is not approximable within a factor of 1.5 even if accurate performance prediction is possible, all processors have the same peak speed, and speed of every processor at any time is restricted to either 50% or 100% of the peak speed. Since the quite restricted problem is not approximable, any more general problem such that accurate performance prediction is impossible and/or processor speed fluctuation pattern is not restricted is also not approximable. So, the proof implies that WSP is not approximable within a factor of 1.5 in realistic grid environment unless P = NP.\",\"PeriodicalId\":305776,\"journal\":{\"name\":\"2008 International Symposium on Parallel Architectures, Algorithms, and Networks (i-span 2008)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Parallel Architectures, Algorithms, and Networks (i-span 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I-SPAN.2008.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Parallel Architectures, Algorithms, and Networks (i-span 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SPAN.2008.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了在计算网格上调度科学工作流的问题。计算网格可以看作是一个异构的并行机器,每个处理器的速度随时间而变化。科学的工作流可以建模为任务DAG。本文主要关注粗粒度工作流。因此,任务之间的通信延迟可以忽略不计,因为每个任务的计算时间远远大于相应的通信延迟。因此,本文将粗粒度工作流网格调度问题(简称WSP)定义为具有处理器速度波动的均匀并行机上经典优先约束调度问题的扩展。我们问题的目标是最小化计划的完工时间。已知当网格的空闲计算能力为零且周期很长时,不存在近似算法。然而,这样的情况似乎是不现实的。本文证明,除非P = NP,否则即使可以进行准确的性能预测,WSP也不能在1.5因子内近似,所有处理器都具有相同的峰值速度,并且任何时候每个处理器的速度都被限制在峰值速度的50%或100%。由于非常受限的问题是不可近似的,因此不可能进行准确的性能预测和/或处理器速度波动模式不受限制的任何更一般的问题也是不可近似的。因此,证明表明在现实网格环境中,除非P = NP,否则WSP不能在1.5因子内近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Non-Approximability of Coarse-Grained Workflow Grid Scheduling
Scheduling a scientific workflow onto a computational grid is considered. A computational grid can be regarded as a heterogeneous parallel machine such that the speed of each processor varies over time. A scientific workflow can be modeled as a DAG of tasks. This paper focuses on a coarse-grained workflow. So, any communication delay between tasks is negligible because computation time of every task is much longer than the corresponding communication delay. Hence, in this paper, a coarse-grained workflow grid scheduling problem (WSP for short) is defined as an extension of the classical precedence constrained scheduling problem over a uniform parallel machine with processor speed fluctuation. The objective of our problem is to minimize the makespan of a schedule. It is known that no approximation algorithm exist if a grid has a very long period with zero spare computing power. However, such situation seems to be unrealistic. This paper gives a proof that, unless P = NP, WSP is not approximable within a factor of 1.5 even if accurate performance prediction is possible, all processors have the same peak speed, and speed of every processor at any time is restricted to either 50% or 100% of the peak speed. Since the quite restricted problem is not approximable, any more general problem such that accurate performance prediction is impossible and/or processor speed fluctuation pattern is not restricted is also not approximable. So, the proof implies that WSP is not approximable within a factor of 1.5 in realistic grid environment unless P = NP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Congestion Control Scheme in Network-on-Chip Based on Best Effort Delay-Sum Optimization Memory and Thread Placement Effects as a Function of Cache Usage: A Study of the Gaussian Chemistry Code on the SunFire X4600 M2 Quantitative Evaluation of Common Subexpression Elimination on Queue Machines Bio-inspired Algorithms for Mobility Management On Non-Approximability of Coarse-Grained Workflow Grid Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1