乘膜密封流体静力膜刚度的超临界CO2试验

Deepak Trivedi, R. A. Bidkar, C. Wolfe, J. Mortzheim
{"title":"乘膜密封流体静力膜刚度的超临界CO2试验","authors":"Deepak Trivedi, R. A. Bidkar, C. Wolfe, J. Mortzheim","doi":"10.1115/gt2019-90975","DOIUrl":null,"url":null,"abstract":"\n Fluid film stiffness is a key design parameter for film-riding seals — a large positive film stiffness ensures stable seal operation with the seal faithfully tracking the rotor in the presence of varying inertial and friction loads. A hydrostatic supercritical CO2 (sCO2) film-riding seal relies on feed ports pressurized with sCO2 to generate film stiffness needed for reliable seal operation. The high-pressure supercritical CO2 expands to lower pressures through the seal bearing face, and during this expansion, undergoes large temperature changes along with a phase change to gaseous state and possibly liquid state. These large temperature changes and phase changes are important design considerations specific to sCO2 as the working fluid. From this perspective, film-stiffness test data with sCO2 as the working fluid is valuable for both understanding the physics as well as for validating the predictions of computational fluid dynamics (CFD) models of sCO2 expansion across a seal bearing face. In prior work, we described a non-rotating stiffness test rig for characterizing fluid film stiffness and presented air-based test data with the rig. In this paper, we present sCO2-based data obtained by connecting this previously described stiffness rig to a newly commissioned sCO2 flow loop (flow rate about 0.1 kg/s, pressures up to 16.5 MPa, temperatures up to 464 K). The test data presented in this paper include seal bearing pressures and fluid/metal temperatures for varying film thickness, seal bearing face tilt and inlet/supply pressures. The test data show significant temperature reduction as the supercritical flow expands across the seal bearing face. The measured bearing pressure was compared with the predictions of a 3D CFD model with real gas CO2 properties, with about 4% error between the measurements and the predictions. The sCO2-based test data in this work and the air-based test data from prior work are used to calculate fluid film stiffness over a range of film thicknesses. It is seen that the sCO2-based data and air-based data tend to collapse on a normalized stiffness curve, which is characteristic of the bearing geometry. Moreover, it is seen that the hydrostatic seal film stiffness generally scales with the supply pressure and can be adjusted to high stiffness values typically expected in hydrodynamic film-riding seals.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Supercritical CO2 Tests for Hydrostatic Film Stiffness in Film-Riding Seals\",\"authors\":\"Deepak Trivedi, R. A. Bidkar, C. Wolfe, J. Mortzheim\",\"doi\":\"10.1115/gt2019-90975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fluid film stiffness is a key design parameter for film-riding seals — a large positive film stiffness ensures stable seal operation with the seal faithfully tracking the rotor in the presence of varying inertial and friction loads. A hydrostatic supercritical CO2 (sCO2) film-riding seal relies on feed ports pressurized with sCO2 to generate film stiffness needed for reliable seal operation. The high-pressure supercritical CO2 expands to lower pressures through the seal bearing face, and during this expansion, undergoes large temperature changes along with a phase change to gaseous state and possibly liquid state. These large temperature changes and phase changes are important design considerations specific to sCO2 as the working fluid. From this perspective, film-stiffness test data with sCO2 as the working fluid is valuable for both understanding the physics as well as for validating the predictions of computational fluid dynamics (CFD) models of sCO2 expansion across a seal bearing face. In prior work, we described a non-rotating stiffness test rig for characterizing fluid film stiffness and presented air-based test data with the rig. In this paper, we present sCO2-based data obtained by connecting this previously described stiffness rig to a newly commissioned sCO2 flow loop (flow rate about 0.1 kg/s, pressures up to 16.5 MPa, temperatures up to 464 K). The test data presented in this paper include seal bearing pressures and fluid/metal temperatures for varying film thickness, seal bearing face tilt and inlet/supply pressures. The test data show significant temperature reduction as the supercritical flow expands across the seal bearing face. The measured bearing pressure was compared with the predictions of a 3D CFD model with real gas CO2 properties, with about 4% error between the measurements and the predictions. The sCO2-based test data in this work and the air-based test data from prior work are used to calculate fluid film stiffness over a range of film thicknesses. It is seen that the sCO2-based data and air-based data tend to collapse on a normalized stiffness curve, which is characteristic of the bearing geometry. Moreover, it is seen that the hydrostatic seal film stiffness generally scales with the supply pressure and can be adjusted to high stiffness values typically expected in hydrodynamic film-riding seals.\",\"PeriodicalId\":412490,\"journal\":{\"name\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2019-90975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-90975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

流体膜刚度是一个关键的设计参数的膜骑密封-一个大的正膜刚度确保稳定的密封运行,密封忠实地跟踪转子在变化的惯性和摩擦载荷的存在。流体静压超临界CO2 (sCO2)滑膜密封依靠sCO2加压进料口产生可靠密封操作所需的膜刚度。高压超临界CO2通过密封轴承表面膨胀到较低的压力,在膨胀过程中,经历了很大的温度变化,同时相变为气态,也可能是液态。这些大的温度变化和相位变化是sCO2作为工作流体的重要设计考虑因素。从这个角度来看,以sCO2为工作流体的膜刚度测试数据对于理解物理特性以及验证sCO2在密封轴承面上膨胀的计算流体动力学(CFD)模型的预测都是有价值的。在之前的工作中,我们描述了一个用于表征流体膜刚度的非旋转刚度测试台,并使用该测试台提供了基于空气的测试数据。在本文中,我们展示了通过将之前描述的刚度钻机连接到新投入使用的sCO2流动回路(流量约0.1 kg/s,压力高达16.5 MPa,温度高达464 K)获得的基于sCO2的测试数据。本文中提供的测试数据包括密封轴承压力和流体/金属温度,不同的膜厚度,密封轴承面倾斜和入口/供应压力。试验数据表明,随着超临界流体在密封轴承面上的扩展,温度显著降低。将实测的轴承压力与具有真实气体CO2特性的三维CFD模型的预测结果进行了比较,结果与预测结果误差约为4%。本工作中基于sco2的测试数据和之前工作中基于空气的测试数据用于计算膜厚度范围内的流体膜刚度。可以看出,基于sco2的数据和基于空气的数据在归一化刚度曲线上趋于崩溃,这是轴承几何形状的特征。此外,可以看出,流体静压密封膜的刚度通常随供应压力的变化而变化,并且可以调整到通常在流体动膜密封中期望的高刚度值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supercritical CO2 Tests for Hydrostatic Film Stiffness in Film-Riding Seals
Fluid film stiffness is a key design parameter for film-riding seals — a large positive film stiffness ensures stable seal operation with the seal faithfully tracking the rotor in the presence of varying inertial and friction loads. A hydrostatic supercritical CO2 (sCO2) film-riding seal relies on feed ports pressurized with sCO2 to generate film stiffness needed for reliable seal operation. The high-pressure supercritical CO2 expands to lower pressures through the seal bearing face, and during this expansion, undergoes large temperature changes along with a phase change to gaseous state and possibly liquid state. These large temperature changes and phase changes are important design considerations specific to sCO2 as the working fluid. From this perspective, film-stiffness test data with sCO2 as the working fluid is valuable for both understanding the physics as well as for validating the predictions of computational fluid dynamics (CFD) models of sCO2 expansion across a seal bearing face. In prior work, we described a non-rotating stiffness test rig for characterizing fluid film stiffness and presented air-based test data with the rig. In this paper, we present sCO2-based data obtained by connecting this previously described stiffness rig to a newly commissioned sCO2 flow loop (flow rate about 0.1 kg/s, pressures up to 16.5 MPa, temperatures up to 464 K). The test data presented in this paper include seal bearing pressures and fluid/metal temperatures for varying film thickness, seal bearing face tilt and inlet/supply pressures. The test data show significant temperature reduction as the supercritical flow expands across the seal bearing face. The measured bearing pressure was compared with the predictions of a 3D CFD model with real gas CO2 properties, with about 4% error between the measurements and the predictions. The sCO2-based test data in this work and the air-based test data from prior work are used to calculate fluid film stiffness over a range of film thicknesses. It is seen that the sCO2-based data and air-based data tend to collapse on a normalized stiffness curve, which is characteristic of the bearing geometry. Moreover, it is seen that the hydrostatic seal film stiffness generally scales with the supply pressure and can be adjusted to high stiffness values typically expected in hydrodynamic film-riding seals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Departure Functions to Estimate Deviation of a Real Gas From the Ideal Gas Model Design Considerations for High Pressure Boil-Off Gas (BOG) Centrifugal Compressors With Synchronous Motor Drives in LNG Liquefaction Plants An Overview of Initial Operational Experience With the Closed-Loop sCO2 Test Facility at Cranfield University Wet Gas Compressor Modeling and Performance Scaling The Effect of Blade Deflections on the Torsional Dynamic of a Wind Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1