基于主成分分析和支持向量机分类器的P300单次检测新方法

R. Swarnkar, P. Prasad, A. Keskar, N. C. Shivprakash
{"title":"基于主成分分析和支持向量机分类器的P300单次检测新方法","authors":"R. Swarnkar, P. Prasad, A. Keskar, N. C. Shivprakash","doi":"10.1109/TENCONSPRING.2016.7519432","DOIUrl":null,"url":null,"abstract":"Single trial detection of P300 signal is one of the trending areas of Brain Computer Interface (BCI) research. We propose a new method with a high level of accuracy to detect P300 signals in a single trial. Features were obtained with a new technique making use of the wavelet coefficients. Reduced feature dimension was achieved using Principal Component Analysis (PCA). Support Vector Machine (SVM) was used as the classifier. The proposed method has achieved an accuracy of 98.47% for Subject A and 95.06% for Subject B. Thus a high degree of accuracy was obtained.","PeriodicalId":166275,"journal":{"name":"2016 IEEE Region 10 Symposium (TENSYMP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new approach to detect P300 in a single trial based on PCA and SVM classifier\",\"authors\":\"R. Swarnkar, P. Prasad, A. Keskar, N. C. Shivprakash\",\"doi\":\"10.1109/TENCONSPRING.2016.7519432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single trial detection of P300 signal is one of the trending areas of Brain Computer Interface (BCI) research. We propose a new method with a high level of accuracy to detect P300 signals in a single trial. Features were obtained with a new technique making use of the wavelet coefficients. Reduced feature dimension was achieved using Principal Component Analysis (PCA). Support Vector Machine (SVM) was used as the classifier. The proposed method has achieved an accuracy of 98.47% for Subject A and 95.06% for Subject B. Thus a high degree of accuracy was obtained.\",\"PeriodicalId\":166275,\"journal\":{\"name\":\"2016 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCONSPRING.2016.7519432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2016.7519432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

P300信号的单次检测是脑机接口(BCI)研究的热点之一。我们提出了一种在单次试验中检测P300信号的高精度新方法。利用小波系数进行特征提取。利用主成分分析(PCA)实现特征降维。采用支持向量机(SVM)作为分类器。该方法对受试者A的准确率为98.47%,对受试者b的准确率为95.06%,具有较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new approach to detect P300 in a single trial based on PCA and SVM classifier
Single trial detection of P300 signal is one of the trending areas of Brain Computer Interface (BCI) research. We propose a new method with a high level of accuracy to detect P300 signals in a single trial. Features were obtained with a new technique making use of the wavelet coefficients. Reduced feature dimension was achieved using Principal Component Analysis (PCA). Support Vector Machine (SVM) was used as the classifier. The proposed method has achieved an accuracy of 98.47% for Subject A and 95.06% for Subject B. Thus a high degree of accuracy was obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interaction techniques using head gaze for virtual reality Tree-based protocol for ad hoc networks constructed with data transmission modems Formal reliability analysis of protective systems in smart grids Comparative analysis of PCA and KPCA on paddy growth stages classification Short term load forecasting of Eid Al Fitr holiday by using interval Type-2 Fuzzy Inference System (Case study: Electrical system of Java Bali in Indonesia)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1