基于PSO的混合卷积神经网络预测人类基因组数据中的重症登革热

Mohammed Mustafa, R. E. Ahmed, S. Eljack
{"title":"基于PSO的混合卷积神经网络预测人类基因组数据中的重症登革热","authors":"Mohammed Mustafa, R. E. Ahmed, S. Eljack","doi":"10.53409/mnaa.jcsit1104","DOIUrl":null,"url":null,"abstract":"Dengue is one of the most significant diseases transmitted by arthropods in the world. Dengue phenotypes are focused on documented inaccuracies in the laboratory and clinical studies. In countries with a high incidence of this disease, early diagnosis of dengue is still a concern for public health. Deep learning has been developed as a highly versatile and accurate methodology for classification and regression, which requires small adjustment, interpretable results, and the prediction of risk for complex diseases. This work is motivated by the inclusion of the Particle Swarm Optimization (PSO) algorithm for the fine-tuning of the model's parameters in the convolutional neural network (CNN). The use of this PSO was used to forecast patients with extreme dengue, and to refine the input weight vector and CNN parameters to achieve anticipated precision, and to prevent premature convergence towards local optimum conditions.","PeriodicalId":125707,"journal":{"name":"Journal of Computational Science and Intelligent Technologies","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Hybrid Convolutional Neural Network with PSO Based Severe Dengue Prognosis Method in Human Genome Data\",\"authors\":\"Mohammed Mustafa, R. E. Ahmed, S. Eljack\",\"doi\":\"10.53409/mnaa.jcsit1104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dengue is one of the most significant diseases transmitted by arthropods in the world. Dengue phenotypes are focused on documented inaccuracies in the laboratory and clinical studies. In countries with a high incidence of this disease, early diagnosis of dengue is still a concern for public health. Deep learning has been developed as a highly versatile and accurate methodology for classification and regression, which requires small adjustment, interpretable results, and the prediction of risk for complex diseases. This work is motivated by the inclusion of the Particle Swarm Optimization (PSO) algorithm for the fine-tuning of the model's parameters in the convolutional neural network (CNN). The use of this PSO was used to forecast patients with extreme dengue, and to refine the input weight vector and CNN parameters to achieve anticipated precision, and to prevent premature convergence towards local optimum conditions.\",\"PeriodicalId\":125707,\"journal\":{\"name\":\"Journal of Computational Science and Intelligent Technologies\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science and Intelligent Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53409/mnaa.jcsit1104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Intelligent Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53409/mnaa.jcsit1104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

登革热是世界上最重要的节肢动物传播疾病之一。登革热表型主要集中在实验室和临床研究中记录的不准确性。在该病高发的国家,登革热的早期诊断仍然是公共卫生关注的问题。深度学习已经发展成为一种高度通用和准确的分类和回归方法,它需要小的调整,可解释的结果,并预测复杂疾病的风险。这项工作的动机是在卷积神经网络(CNN)中包含用于微调模型参数的粒子群优化(PSO)算法。利用该粒子群预测极端登革热患者,并细化输入权向量和CNN参数以达到预期精度,防止过早收敛到局部最优条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Convolutional Neural Network with PSO Based Severe Dengue Prognosis Method in Human Genome Data
Dengue is one of the most significant diseases transmitted by arthropods in the world. Dengue phenotypes are focused on documented inaccuracies in the laboratory and clinical studies. In countries with a high incidence of this disease, early diagnosis of dengue is still a concern for public health. Deep learning has been developed as a highly versatile and accurate methodology for classification and regression, which requires small adjustment, interpretable results, and the prediction of risk for complex diseases. This work is motivated by the inclusion of the Particle Swarm Optimization (PSO) algorithm for the fine-tuning of the model's parameters in the convolutional neural network (CNN). The use of this PSO was used to forecast patients with extreme dengue, and to refine the input weight vector and CNN parameters to achieve anticipated precision, and to prevent premature convergence towards local optimum conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving The Performances of WSN Using Data Scheduler and Hierarchical Tree An Analysis of Deep Learning Techniques in Neuroimaging Performance Analysis of Emotion Classification Using Multimodal Fusion Technique Classification of Diabetic Retinopathy using Stacked Autoencoder-Based Deep Neural Network A Hybrid Genetic-Neuro Algorithm for Cloud Intrusion Detection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1