双极模式下铝镁合金等离子体电解氧化声发射产生的循环规律

I. Rastegaev, M. R. Shafeev, I. Rastegaeva, A. Polunin, M. M. Krishtal
{"title":"双极模式下铝镁合金等离子体电解氧化声发射产生的循环规律","authors":"I. Rastegaev, M. R. Shafeev, I. Rastegaeva, A. Polunin, M. M. Krishtal","doi":"10.18323/2782-4039-2023-2-64-8","DOIUrl":null,"url":null,"abstract":"The paper analyzes the features of the acoustic emission (AE) signal generation during plasma-electrolytic oxidation (PEO) of the AMg6 aluminum alloy in a bipolar (anode-cathode) pulsed mode within each cycle of voltage application. The authors studied the range of PEO modes that almost completely covers all standard technological modes for processing aluminum alloys by the current densities (6–18 A/dm2) and current ratio in half-cycles (0.7–1.3), which allowed fixing and studying the AE accompanying the formation of oxide layers for various purposes. For the first time, due to AE registration, a new PEO stage was identified, in which there was no microarc breakdown to the substrate, but which was accompanied by an increase in the layer thickness, and the nature of which has not yet been determined. According to the known features of the oxidation stages, the authors systematized the repetitive forms of AE manifestation in the cycles of exposure and identified their five types and three subtypes. The study shows that the approach used to establish the PEO stages by the “acoustic emission amplitude” parameter has poor accuracy, since it does not take into account the form of signals and the half-period of their registration. Therefore, the authors developed and tested a new approach for analyzing AE frames synchronously with the cycles of change in the forming voltage during PEO, and proposed a new “acoustic-emission median” parameter, which allows identifying the main types and subtypes of signals accompanying the oxidation stages. An experimental study of the proposed AE parameter was carried out to identify these PEO stages, which confirmed the operability, high accuracy and sensitivity of the proposed parameter to the subtypes of AE signals recorded at the cathode stage of “soft sparking”. The latter is of particular interest, since it is a means of studying a given oxidation stage with a resolution equal to the exposure cycle.","PeriodicalId":251458,"journal":{"name":"Frontier materials & technologies","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclic regularities of the acoustic emission generation during plasma-electrolytic oxidation of an Al–Mg alloy in the bipolar mode\",\"authors\":\"I. Rastegaev, M. R. Shafeev, I. Rastegaeva, A. Polunin, M. M. Krishtal\",\"doi\":\"10.18323/2782-4039-2023-2-64-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper analyzes the features of the acoustic emission (AE) signal generation during plasma-electrolytic oxidation (PEO) of the AMg6 aluminum alloy in a bipolar (anode-cathode) pulsed mode within each cycle of voltage application. The authors studied the range of PEO modes that almost completely covers all standard technological modes for processing aluminum alloys by the current densities (6–18 A/dm2) and current ratio in half-cycles (0.7–1.3), which allowed fixing and studying the AE accompanying the formation of oxide layers for various purposes. For the first time, due to AE registration, a new PEO stage was identified, in which there was no microarc breakdown to the substrate, but which was accompanied by an increase in the layer thickness, and the nature of which has not yet been determined. According to the known features of the oxidation stages, the authors systematized the repetitive forms of AE manifestation in the cycles of exposure and identified their five types and three subtypes. The study shows that the approach used to establish the PEO stages by the “acoustic emission amplitude” parameter has poor accuracy, since it does not take into account the form of signals and the half-period of their registration. Therefore, the authors developed and tested a new approach for analyzing AE frames synchronously with the cycles of change in the forming voltage during PEO, and proposed a new “acoustic-emission median” parameter, which allows identifying the main types and subtypes of signals accompanying the oxidation stages. An experimental study of the proposed AE parameter was carried out to identify these PEO stages, which confirmed the operability, high accuracy and sensitivity of the proposed parameter to the subtypes of AE signals recorded at the cathode stage of “soft sparking”. The latter is of particular interest, since it is a means of studying a given oxidation stage with a resolution equal to the exposure cycle.\",\"PeriodicalId\":251458,\"journal\":{\"name\":\"Frontier materials & technologies\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontier materials & technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18323/2782-4039-2023-2-64-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontier materials & technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18323/2782-4039-2023-2-64-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析了AMg6铝合金在双极(阳极-阴极)脉冲模式下等离子体电解氧化(PEO)过程中各电压周期内声发射(AE)信号产生的特征。作者通过电流密度(6-18 A/dm2)和半循环电流比(0.7-1.3)研究了PEO模式的范围,几乎完全涵盖了铝合金加工的所有标准工艺模式,从而可以固定和研究各种氧化层形成过程中的声发射。由于AE配准,首次发现了一个新的PEO阶段,在这个阶段中,衬底没有微弧击穿,但伴随着层厚度的增加,其性质尚未确定。根据已知的氧化阶段特征,将AE在暴露周期中的重复表现形式系统化,并将其分为5种类型和3种亚型。研究表明,利用“声发射幅值”参数建立PEO级的方法由于没有考虑信号的形式和配准的半周期,精度较差。因此,作者开发并测试了一种新的方法,用于同步分析PEO过程中成形电压变化周期的声发射帧,并提出了一个新的“声发射中值”参数,该参数可以识别伴随氧化阶段的主要类型和子类型信号。对所提出的声发射参数进行了实验研究,验证了所提出参数对“软火花”阴极段记录的声发射信号亚型的可操作性、准确性和灵敏度。后者是特别感兴趣的,因为它是一种研究给定氧化阶段的方法,其分辨率等于曝光周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cyclic regularities of the acoustic emission generation during plasma-electrolytic oxidation of an Al–Mg alloy in the bipolar mode
The paper analyzes the features of the acoustic emission (AE) signal generation during plasma-electrolytic oxidation (PEO) of the AMg6 aluminum alloy in a bipolar (anode-cathode) pulsed mode within each cycle of voltage application. The authors studied the range of PEO modes that almost completely covers all standard technological modes for processing aluminum alloys by the current densities (6–18 A/dm2) and current ratio in half-cycles (0.7–1.3), which allowed fixing and studying the AE accompanying the formation of oxide layers for various purposes. For the first time, due to AE registration, a new PEO stage was identified, in which there was no microarc breakdown to the substrate, but which was accompanied by an increase in the layer thickness, and the nature of which has not yet been determined. According to the known features of the oxidation stages, the authors systematized the repetitive forms of AE manifestation in the cycles of exposure and identified their five types and three subtypes. The study shows that the approach used to establish the PEO stages by the “acoustic emission amplitude” parameter has poor accuracy, since it does not take into account the form of signals and the half-period of their registration. Therefore, the authors developed and tested a new approach for analyzing AE frames synchronously with the cycles of change in the forming voltage during PEO, and proposed a new “acoustic-emission median” parameter, which allows identifying the main types and subtypes of signals accompanying the oxidation stages. An experimental study of the proposed AE parameter was carried out to identify these PEO stages, which confirmed the operability, high accuracy and sensitivity of the proposed parameter to the subtypes of AE signals recorded at the cathode stage of “soft sparking”. The latter is of particular interest, since it is a means of studying a given oxidation stage with a resolution equal to the exposure cycle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The formation of PEO coatings on the superelastic Ti–18Zr–15Nb alloy in calcium-containing electrolytes Finite-element simulation of fatigue behavior of a medical implant produced from titanium in the large-grained and nanostructured states The study of the structure and properties of a wear-resistant gas-thermal coating containing tungsten FORMING AN EDGED CUBIC TEXTURE IN BAND SUBSTRATES MADE OF (Cu+Ni)–Me (Me=Mo, Mn, Nb) ALLOYS FOR HIGH-TEMPERATURE SECOND-GENERATION SUPERCONDUCTORS The study of the structure and properties of a friction composite material based on an iron matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1