一种有效的人脸图像聚类方法

C. Otto, Brendan Klare, Anil K. Jain
{"title":"一种有效的人脸图像聚类方法","authors":"C. Otto, Brendan Klare, Anil K. Jain","doi":"10.1109/ICB.2015.7139091","DOIUrl":null,"url":null,"abstract":"Investigations that require the exploitation of large volumes of face imagery are increasingly common in current forensic scenarios (e.g., Boston Marathon bombing), but effective solutions for triaging such imagery (i.e., low importance, moderate importance, and of critical interest) are not available in the literature. General issues for investigators in these scenarios are a lack of systems that can scale to volumes of images of the order of a few million, and a lack of established methods for clustering the face images into the unknown number of persons of interest contained in the collection. As such, we explore best practices for clustering large sets of face images (up to 1 million here) into large numbers of clusters (approximately 200 thousand) as a method of reducing the volume of data to be investigated by forensic analysts. Our analysis involves a performance comparison of several clustering algorithms in terms of the accuracy of grouping face images by identity, run-time, and efficiency in representing large datasets of face images in terms of compact and isolated clusters. For two different face datasets, a mugshot database (PCSO) and the well known unconstrained dataset, LFW, we find the rank-order clustering method to be effective in clustering accuracy, and relatively efficient in terms of run-time.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"An efficient approach for clustering face images\",\"authors\":\"C. Otto, Brendan Klare, Anil K. Jain\",\"doi\":\"10.1109/ICB.2015.7139091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigations that require the exploitation of large volumes of face imagery are increasingly common in current forensic scenarios (e.g., Boston Marathon bombing), but effective solutions for triaging such imagery (i.e., low importance, moderate importance, and of critical interest) are not available in the literature. General issues for investigators in these scenarios are a lack of systems that can scale to volumes of images of the order of a few million, and a lack of established methods for clustering the face images into the unknown number of persons of interest contained in the collection. As such, we explore best practices for clustering large sets of face images (up to 1 million here) into large numbers of clusters (approximately 200 thousand) as a method of reducing the volume of data to be investigated by forensic analysts. Our analysis involves a performance comparison of several clustering algorithms in terms of the accuracy of grouping face images by identity, run-time, and efficiency in representing large datasets of face images in terms of compact and isolated clusters. For two different face datasets, a mugshot database (PCSO) and the well known unconstrained dataset, LFW, we find the rank-order clustering method to be effective in clustering accuracy, and relatively efficient in terms of run-time.\",\"PeriodicalId\":237372,\"journal\":{\"name\":\"2015 International Conference on Biometrics (ICB)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB.2015.7139091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在当前的法医场景(例如,波士顿马拉松爆炸案)中,需要利用大量面部图像的调查越来越普遍,但是在文献中没有有效的解决方案来分类这些图像(即低重要性,中等重要性和关键兴趣)。在这些情况下,调查人员面临的一般问题是缺乏可以扩展到数百万量级的图像量的系统,以及缺乏将面部图像聚类到集合中未知数量的感兴趣人员的既定方法。因此,我们探索了将大型面部图像集(这里多达100万)聚类到大量聚类(大约20万)中的最佳实践,作为减少法医分析师要调查的数据量的方法。我们的分析涉及几种聚类算法的性能比较,包括根据身份对人脸图像分组的准确性、运行时间和用紧凑和孤立的聚类表示大型人脸图像数据集的效率。对于两种不同的人脸数据集,即面部照片数据库(PCSO)和众所周知的无约束数据集LFW,我们发现秩序聚类方法在聚类精度上是有效的,在运行时间上是相对高效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient approach for clustering face images
Investigations that require the exploitation of large volumes of face imagery are increasingly common in current forensic scenarios (e.g., Boston Marathon bombing), but effective solutions for triaging such imagery (i.e., low importance, moderate importance, and of critical interest) are not available in the literature. General issues for investigators in these scenarios are a lack of systems that can scale to volumes of images of the order of a few million, and a lack of established methods for clustering the face images into the unknown number of persons of interest contained in the collection. As such, we explore best practices for clustering large sets of face images (up to 1 million here) into large numbers of clusters (approximately 200 thousand) as a method of reducing the volume of data to be investigated by forensic analysts. Our analysis involves a performance comparison of several clustering algorithms in terms of the accuracy of grouping face images by identity, run-time, and efficiency in representing large datasets of face images in terms of compact and isolated clusters. For two different face datasets, a mugshot database (PCSO) and the well known unconstrained dataset, LFW, we find the rank-order clustering method to be effective in clustering accuracy, and relatively efficient in terms of run-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and robust self-training beard/moustache detection and segmentation Composite sketch recognition via deep network - a transfer learning approach Cross-sensor iris verification applying robust fused segmentation algorithms Multi-modal authentication system for smartphones using face, iris and periocular An efficient approach for clustering face images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1