{"title":"考虑控制饱和的卫星姿态跟踪控制器设计","authors":"Jianting Lv, G. Ma, Chuanjiang Li","doi":"10.1109/ICIEA.2007.4318778","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of attitude tracking control of rigid satellite subject to control input saturation and parametric uncertainty. An adaptive controller is designed to implement real-time identification for inertia parameters, and Lyapunov stability theory is utilized to achieve the stability analysis. By introducing hyperbolic tangent saturation function into the control scheme, it can be concluded that the control input saturation problem can be effectively restrained so long as the control parameters are selected to satisfy a specific inequality. Numerical simulations are included, and the results demonstrate that the control scheme realizes the attitude tracking control under control saturation and implements identification for inertia matrix.","PeriodicalId":231682,"journal":{"name":"2007 2nd IEEE Conference on Industrial Electronics and Applications","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Satellite Attitude Tracking Controller Design Subject to Control Saturation\",\"authors\":\"Jianting Lv, G. Ma, Chuanjiang Li\",\"doi\":\"10.1109/ICIEA.2007.4318778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the problem of attitude tracking control of rigid satellite subject to control input saturation and parametric uncertainty. An adaptive controller is designed to implement real-time identification for inertia parameters, and Lyapunov stability theory is utilized to achieve the stability analysis. By introducing hyperbolic tangent saturation function into the control scheme, it can be concluded that the control input saturation problem can be effectively restrained so long as the control parameters are selected to satisfy a specific inequality. Numerical simulations are included, and the results demonstrate that the control scheme realizes the attitude tracking control under control saturation and implements identification for inertia matrix.\",\"PeriodicalId\":231682,\"journal\":{\"name\":\"2007 2nd IEEE Conference on Industrial Electronics and Applications\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd IEEE Conference on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2007.4318778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2007.4318778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Satellite Attitude Tracking Controller Design Subject to Control Saturation
This paper deals with the problem of attitude tracking control of rigid satellite subject to control input saturation and parametric uncertainty. An adaptive controller is designed to implement real-time identification for inertia parameters, and Lyapunov stability theory is utilized to achieve the stability analysis. By introducing hyperbolic tangent saturation function into the control scheme, it can be concluded that the control input saturation problem can be effectively restrained so long as the control parameters are selected to satisfy a specific inequality. Numerical simulations are included, and the results demonstrate that the control scheme realizes the attitude tracking control under control saturation and implements identification for inertia matrix.