有效事件检测的语义旋转模型

Anran Hao, S. Hui, Jian Su
{"title":"有效事件检测的语义旋转模型","authors":"Anran Hao, S. Hui, Jian Su","doi":"10.48550/arXiv.2211.00709","DOIUrl":null,"url":null,"abstract":"Event Detection, which aims to identify and classify mentions of event instances from unstructured articles, is an important task in Natural Language Processing (NLP). Existing techniques for event detection only use homogeneous one-hot vectors to represent the event type classes, ignoring the fact that the semantic meaning of the types is important to the task. Such an approach is inefficient and prone to overfitting. In this paper, we propose a Semantic Pivoting Model for Effective Event Detection (SPEED), which explicitly incorporates prior information during training and captures semantically meaningful correlations between input and events. Experimental results show that our proposed model achieves state-of-the-art performance and outperforms the baselines in multiple settings without using any external resources.","PeriodicalId":397879,"journal":{"name":"Asian Conference on Intelligent Information and Database Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Pivoting Model for Effective Event Detection\",\"authors\":\"Anran Hao, S. Hui, Jian Su\",\"doi\":\"10.48550/arXiv.2211.00709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event Detection, which aims to identify and classify mentions of event instances from unstructured articles, is an important task in Natural Language Processing (NLP). Existing techniques for event detection only use homogeneous one-hot vectors to represent the event type classes, ignoring the fact that the semantic meaning of the types is important to the task. Such an approach is inefficient and prone to overfitting. In this paper, we propose a Semantic Pivoting Model for Effective Event Detection (SPEED), which explicitly incorporates prior information during training and captures semantically meaningful correlations between input and events. Experimental results show that our proposed model achieves state-of-the-art performance and outperforms the baselines in multiple settings without using any external resources.\",\"PeriodicalId\":397879,\"journal\":{\"name\":\"Asian Conference on Intelligent Information and Database Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Conference on Intelligent Information and Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.00709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Conference on Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.00709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

事件检测是自然语言处理(NLP)中的一项重要任务,旨在从非结构化文章中识别和分类提及的事件实例。现有的事件检测技术只使用同构的单热向量来表示事件类型类,而忽略了类型的语义对任务的重要性。这种方法效率低下,而且容易出现过拟合。在本文中,我们提出了一种用于有效事件检测(SPEED)的语义旋转模型,该模型在训练过程中明确地结合先验信息,并捕获输入和事件之间语义上有意义的相关性。实验结果表明,我们提出的模型在不使用任何外部资源的情况下达到了最先进的性能,并且在多个设置中优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic Pivoting Model for Effective Event Detection
Event Detection, which aims to identify and classify mentions of event instances from unstructured articles, is an important task in Natural Language Processing (NLP). Existing techniques for event detection only use homogeneous one-hot vectors to represent the event type classes, ignoring the fact that the semantic meaning of the types is important to the task. Such an approach is inefficient and prone to overfitting. In this paper, we propose a Semantic Pivoting Model for Effective Event Detection (SPEED), which explicitly incorporates prior information during training and captures semantically meaningful correlations between input and events. Experimental results show that our proposed model achieves state-of-the-art performance and outperforms the baselines in multiple settings without using any external resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speeding Up Recommender Systems Using Association Rules Semantic Pivoting Model for Effective Event Detection A practical method for occupational skills detection in Vietnamese job listings Keyword Extraction from Short Texts with~a~Text-To-Text Transfer Transformer Image-based Contextual Pill Recognition with Medical Knowledge Graph Assistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1