Pub Date : 2022-11-16DOI: 10.1007/978-3-031-21967-2_14
Eyad Kannout, H. Nguyen, Marek Grzegorowski
{"title":"Speeding Up Recommender Systems Using Association Rules","authors":"Eyad Kannout, H. Nguyen, Marek Grzegorowski","doi":"10.1007/978-3-031-21967-2_14","DOIUrl":"https://doi.org/10.1007/978-3-031-21967-2_14","url":null,"abstract":"","PeriodicalId":397879,"journal":{"name":"Asian Conference on Intelligent Information and Database Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121832681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01DOI: 10.48550/arXiv.2211.00709
Anran Hao, S. Hui, Jian Su
Event Detection, which aims to identify and classify mentions of event instances from unstructured articles, is an important task in Natural Language Processing (NLP). Existing techniques for event detection only use homogeneous one-hot vectors to represent the event type classes, ignoring the fact that the semantic meaning of the types is important to the task. Such an approach is inefficient and prone to overfitting. In this paper, we propose a Semantic Pivoting Model for Effective Event Detection (SPEED), which explicitly incorporates prior information during training and captures semantically meaningful correlations between input and events. Experimental results show that our proposed model achieves state-of-the-art performance and outperforms the baselines in multiple settings without using any external resources.
{"title":"Semantic Pivoting Model for Effective Event Detection","authors":"Anran Hao, S. Hui, Jian Su","doi":"10.48550/arXiv.2211.00709","DOIUrl":"https://doi.org/10.48550/arXiv.2211.00709","url":null,"abstract":"Event Detection, which aims to identify and classify mentions of event instances from unstructured articles, is an important task in Natural Language Processing (NLP). Existing techniques for event detection only use homogeneous one-hot vectors to represent the event type classes, ignoring the fact that the semantic meaning of the types is important to the task. Such an approach is inefficient and prone to overfitting. In this paper, we propose a Semantic Pivoting Model for Effective Event Detection (SPEED), which explicitly incorporates prior information during training and captures semantically meaningful correlations between input and events. Experimental results show that our proposed model achieves state-of-the-art performance and outperforms the baselines in multiple settings without using any external resources.","PeriodicalId":397879,"journal":{"name":"Asian Conference on Intelligent Information and Database Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115373676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-26DOI: 10.48550/arXiv.2210.14607
Viet-Trung Tran, Hai Cao, T. Cao
. Vietnamese labor market has been under an imbalanced development. The number of university graduates is growing, but so is the unemployment rate. This situation is often caused by the lack of accurate and timely labor market information, which leads to skill miss-matches between worker supply and the actual market demands. To build a data monitoring and analytic platform for the labor market, one of the main challenges is to be able to automatically detect occupational skills from labor-related data, such as resumes and job listings. Traditional approaches rely on existing taxonomy and/or large annotated data to build Named Entity Recognition (NER) models. They are expensive and require huge manual efforts. In this paper, we propose a practical methodology for skill detection in Vietnamese job listings. Rather than viewing the task as a NER task, we consider the task as a ranking problem. We propose a pipeline in which phrases are first extracted and ranked in semantic similarity with the phrases’ contexts. Then we employ a final classification to detect skill phrases. We collected three datasets and conducted extensive experiments. The results demonstrated that our methodology achieved better performance than a NER model in scarce datasets.
{"title":"A practical method for occupational skills detection in Vietnamese job listings","authors":"Viet-Trung Tran, Hai Cao, T. Cao","doi":"10.48550/arXiv.2210.14607","DOIUrl":"https://doi.org/10.48550/arXiv.2210.14607","url":null,"abstract":". Vietnamese labor market has been under an imbalanced development. The number of university graduates is growing, but so is the unemployment rate. This situation is often caused by the lack of accurate and timely labor market information, which leads to skill miss-matches between worker supply and the actual market demands. To build a data monitoring and analytic platform for the labor market, one of the main challenges is to be able to automatically detect occupational skills from labor-related data, such as resumes and job listings. Traditional approaches rely on existing taxonomy and/or large annotated data to build Named Entity Recognition (NER) models. They are expensive and require huge manual efforts. In this paper, we propose a practical methodology for skill detection in Vietnamese job listings. Rather than viewing the task as a NER task, we consider the task as a ranking problem. We propose a pipeline in which phrases are first extracted and ranked in semantic similarity with the phrases’ contexts. Then we employ a final classification to detect skill phrases. We collected three datasets and conducted extensive experiments. The results demonstrated that our methodology achieved better performance than a NER model in scarce datasets.","PeriodicalId":397879,"journal":{"name":"Asian Conference on Intelligent Information and Database Systems","volume":"159 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115636890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-28DOI: 10.48550/arXiv.2209.14008
Piotr Pęzik, Agnieszka Mikolajczyk-Barela, Adam Wawrzynski, Bartlomiej Niton, M. Ogrodniczuk
The paper explores the relevance of the Text-To-Text Transfer Transformer language model (T5) for Polish (plT5) to the task of intrinsic and extrinsic keyword extraction from short text passages. The evaluation is carried out on the new Polish Open Science Metadata Corpus (POSMAC), which is released with this paper: a collection of 216,214 abstracts of scientific publications compiled in the CURLICAT project. We compare the results obtained by four different methods, i.e. plT5kw, extremeText, TermoPL, KeyBERT and conclude that the plT5kw model yields particularly promising results for both frequent and sparsely represented keywords. Furthermore, a plT5kw keyword generation model trained on the POSMAC also seems to produce highly useful results in cross-domain text labelling scenarios. We discuss the performance of the model on news stories and phone-based dialog transcripts which represent text genres and domains extrinsic to the dataset of scientific abstracts. Finally, we also attempt to characterize the challenges of evaluating a text-to-text model on both intrinsic and extrinsic keyword extraction.
{"title":"Keyword Extraction from Short Texts with~a~Text-To-Text Transfer Transformer","authors":"Piotr Pęzik, Agnieszka Mikolajczyk-Barela, Adam Wawrzynski, Bartlomiej Niton, M. Ogrodniczuk","doi":"10.48550/arXiv.2209.14008","DOIUrl":"https://doi.org/10.48550/arXiv.2209.14008","url":null,"abstract":"The paper explores the relevance of the Text-To-Text Transfer Transformer language model (T5) for Polish (plT5) to the task of intrinsic and extrinsic keyword extraction from short text passages. The evaluation is carried out on the new Polish Open Science Metadata Corpus (POSMAC), which is released with this paper: a collection of 216,214 abstracts of scientific publications compiled in the CURLICAT project. We compare the results obtained by four different methods, i.e. plT5kw, extremeText, TermoPL, KeyBERT and conclude that the plT5kw model yields particularly promising results for both frequent and sparsely represented keywords. Furthermore, a plT5kw keyword generation model trained on the POSMAC also seems to produce highly useful results in cross-domain text labelling scenarios. We discuss the performance of the model on news stories and phone-based dialog transcripts which represent text genres and domains extrinsic to the dataset of scientific abstracts. Finally, we also attempt to characterize the challenges of evaluating a text-to-text model on both intrinsic and extrinsic keyword extraction.","PeriodicalId":397879,"journal":{"name":"Asian Conference on Intelligent Information and Database Systems","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131601196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-04DOI: 10.48550/arXiv.2208.02432
Anh Duy Nguyen, Thuy-Dung Nguyen, H. Pham, T. Nguyen, Phi-Le Nguyen
Identifying pills given their captured images under various conditions and backgrounds has been becoming more and more essential. Several efforts have been devoted to utilizing the deep learning-based approach to tackle the pill recognition problem in the literature. However, due to the high similarity between pills' appearance, misrecognition often occurs, leaving pill recognition a challenge. To this end, in this paper, we introduce a novel approach named PIKA that leverages external knowledge to enhance pill recognition accuracy. Specifically, we address a practical scenario (which we call contextual pill recognition), aiming to identify pills in a picture of a patient's pill intake. Firstly, we propose a novel method for modeling the implicit association between pills in the presence of an external data source, in this case, prescriptions. Secondly, we present a walk-based graph embedding model that transforms from the graph space to vector space and extracts condensed relational features of the pills. Thirdly, a final framework is provided that leverages both image-based visual and graph-based relational features to accomplish the pill identification task. Within this framework, the visual representation of each pill is mapped to the graph embedding space, which is then used to execute attention over the graph representation, resulting in a semantically-rich context vector that aids in the final classification. To our knowledge, this is the first study to use external prescription data to establish associations between medicines and to classify them using this aiding information. The architecture of PIKA is lightweight and has the flexibility to incorporate into any recognition backbones. The experimental results show that by leveraging the external knowledge graph, PIKA can improve the recognition accuracy from 4.8% to 34.1% in terms of F1-score, compared to baselines.
{"title":"Image-based Contextual Pill Recognition with Medical Knowledge Graph Assistance","authors":"Anh Duy Nguyen, Thuy-Dung Nguyen, H. Pham, T. Nguyen, Phi-Le Nguyen","doi":"10.48550/arXiv.2208.02432","DOIUrl":"https://doi.org/10.48550/arXiv.2208.02432","url":null,"abstract":"Identifying pills given their captured images under various conditions and backgrounds has been becoming more and more essential. Several efforts have been devoted to utilizing the deep learning-based approach to tackle the pill recognition problem in the literature. However, due to the high similarity between pills' appearance, misrecognition often occurs, leaving pill recognition a challenge. To this end, in this paper, we introduce a novel approach named PIKA that leverages external knowledge to enhance pill recognition accuracy. Specifically, we address a practical scenario (which we call contextual pill recognition), aiming to identify pills in a picture of a patient's pill intake. Firstly, we propose a novel method for modeling the implicit association between pills in the presence of an external data source, in this case, prescriptions. Secondly, we present a walk-based graph embedding model that transforms from the graph space to vector space and extracts condensed relational features of the pills. Thirdly, a final framework is provided that leverages both image-based visual and graph-based relational features to accomplish the pill identification task. Within this framework, the visual representation of each pill is mapped to the graph embedding space, which is then used to execute attention over the graph representation, resulting in a semantically-rich context vector that aids in the final classification. To our knowledge, this is the first study to use external prescription data to establish associations between medicines and to classify them using this aiding information. The architecture of PIKA is lightweight and has the flexibility to incorporate into any recognition backbones. The experimental results show that by leveraging the external knowledge graph, PIKA can improve the recognition accuracy from 4.8% to 34.1% in terms of F1-score, compared to baselines.","PeriodicalId":397879,"journal":{"name":"Asian Conference on Intelligent Information and Database Systems","volume":"134 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134065374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-27DOI: 10.1007/978-3-031-21743-2_48
Co Van Dinh, Son T. Luu, A. Nguyen
{"title":"Detecting Spam Reviews on Vietnamese E-commerce Websites","authors":"Co Van Dinh, Son T. Luu, A. Nguyen","doi":"10.1007/978-3-031-21743-2_48","DOIUrl":"https://doi.org/10.1007/978-3-031-21743-2_48","url":null,"abstract":"","PeriodicalId":397879,"journal":{"name":"Asian Conference on Intelligent Information and Database Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127916356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-25DOI: 10.48550/arXiv.2207.12086
A. Mohammed, D. Nguyen, Bao Duong, T. Nguyen
Data augmentation is one of the most successful techniques to improve the classification accuracy of machine learning models in computer vision. However, applying data augmentation to tabular data is a challenging problem since it is hard to generate synthetic samples with labels. In this paper, we propose an efficient classifier with a novel data augmentation technique for tabular data. Our method called CCRAL combines causal reasoning to learn counterfactual samples for the original training samples and active learning to select useful counterfactual samples based on a region of uncertainty. By doing this, our method can maximize our model's generalization on the unseen testing data. We validate our method analytically, and compare with the standard baselines. Our experimental results highlight that CCRAL achieves significantly better performance than those of the baselines across several real-world tabular datasets in terms of accuracy and AUC. Data and source code are available at: https://github.com/nphdang/CCRAL.
{"title":"Efficient Classification with Counterfactual Reasoning and Active Learning","authors":"A. Mohammed, D. Nguyen, Bao Duong, T. Nguyen","doi":"10.48550/arXiv.2207.12086","DOIUrl":"https://doi.org/10.48550/arXiv.2207.12086","url":null,"abstract":"Data augmentation is one of the most successful techniques to improve the classification accuracy of machine learning models in computer vision. However, applying data augmentation to tabular data is a challenging problem since it is hard to generate synthetic samples with labels. In this paper, we propose an efficient classifier with a novel data augmentation technique for tabular data. Our method called CCRAL combines causal reasoning to learn counterfactual samples for the original training samples and active learning to select useful counterfactual samples based on a region of uncertainty. By doing this, our method can maximize our model's generalization on the unseen testing data. We validate our method analytically, and compare with the standard baselines. Our experimental results highlight that CCRAL achieves significantly better performance than those of the baselines across several real-world tabular datasets in terms of accuracy and AUC. Data and source code are available at: https://github.com/nphdang/CCRAL.","PeriodicalId":397879,"journal":{"name":"Asian Conference on Intelligent Information and Database Systems","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127910007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-20DOI: 10.1007/978-3-031-21967-2_18
Tamás Matuszka, Dániel Kozma
{"title":"A Novel Neural Network Training Method for Autonomous Driving Using Semi-Pseudo-Labels and 3D Data Augmentations","authors":"Tamás Matuszka, Dániel Kozma","doi":"10.1007/978-3-031-21967-2_18","DOIUrl":"https://doi.org/10.1007/978-3-031-21967-2_18","url":null,"abstract":"","PeriodicalId":397879,"journal":{"name":"Asian Conference on Intelligent Information and Database Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122982317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-16DOI: 10.48550/arXiv.2207.07831
Mayank Singhal, Suman Banerjee
In this paper, we study the problem of textsc{Utility Driven Job Selection} on Road Networks for which the inputs are: a road network with the vertices as the set of Point-Of-Interests (Henceforth mentioned as POI) and the edges are road segments joining the POIs, a set of jobs with their originating POI, starting time, duration, and the utility. A worker can earn the utility associated with the job if (s)he performs this. As the jobs are originating at different POIs, the worker has to move from one POI to the other one to take up the job. Some budget is available for this purpose. Any two jobs can be taken up by the worker only if the finishing time of the first job plus traveling time from the POI of the first job to the second one should be less than or equal to the starting time of the second job. We call this constraint as the temporal constraint. The goal of this problem is to choose a subset of the jobs to maximize the earned utility such that the budget and temporal constraints should not be violated. We present two solution approaches with detailed analysis. First one of them works based on finding the locally optimal job at the end of every job and we call this approach as the emph{Best First Search Approach}. The other approach is based on the Nearest Neighbor Search on road networks. We perform a set of experiments with realmbox{-}world trajectory datasets to demonstrate the efficiency and effectiveness of the proposed solution approaches. We observe that the proposed approaches lead to more utility compared to baseline methods.
{"title":"Utility Driven Job Selection Problem on Road Networks","authors":"Mayank Singhal, Suman Banerjee","doi":"10.48550/arXiv.2207.07831","DOIUrl":"https://doi.org/10.48550/arXiv.2207.07831","url":null,"abstract":"In this paper, we study the problem of textsc{Utility Driven Job Selection} on Road Networks for which the inputs are: a road network with the vertices as the set of Point-Of-Interests (Henceforth mentioned as POI) and the edges are road segments joining the POIs, a set of jobs with their originating POI, starting time, duration, and the utility. A worker can earn the utility associated with the job if (s)he performs this. As the jobs are originating at different POIs, the worker has to move from one POI to the other one to take up the job. Some budget is available for this purpose. Any two jobs can be taken up by the worker only if the finishing time of the first job plus traveling time from the POI of the first job to the second one should be less than or equal to the starting time of the second job. We call this constraint as the temporal constraint. The goal of this problem is to choose a subset of the jobs to maximize the earned utility such that the budget and temporal constraints should not be violated. We present two solution approaches with detailed analysis. First one of them works based on finding the locally optimal job at the end of every job and we call this approach as the emph{Best First Search Approach}. The other approach is based on the Nearest Neighbor Search on road networks. We perform a set of experiments with realmbox{-}world trajectory datasets to demonstrate the efficiency and effectiveness of the proposed solution approaches. We observe that the proposed approaches lead to more utility compared to baseline methods.","PeriodicalId":397879,"journal":{"name":"Asian Conference on Intelligent Information and Database Systems","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124936171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-12DOI: 10.48550/arXiv.2205.05940
Duc H. Le, T. T. Doan, S. T. Huynh, Binh T. Nguyen
. The recommendation system plays a vital role in many areas, especially academic fields, to support researchers in submitting and increasing the acceptance of their work through the conference or journal selection process. This study proposes a transformer-based model using transfer learning as an efficient approach for the paper submission recommendation system. By combining essential information (such as the title, the abstract, and the list of keywords) with the aims & scopes of journals, the model can recommend the Top K journals that maximize the acceptance of the paper. Our model had developed through two states: (i) Fine-tuning the pre-trained language model (LM) with a simple contrastive learning framework. We utilized a simple supervised contrastive objective to fine-tune all parameters, encouraging the LM to learn the document representation effectively. (ii) The fine-tuned LM was then trained on different combinations of the features for the downstream task. This study suggests a more advanced method for enhancing the efficiency of the paper submission recommendation system compared to previous approaches when we respectively achieve 0.5173, 0.8097, 0.8862, 0.9496 for Top 1, 3, 5, 10 accuracies on the test set for combining the title, abstract, and keywords as input features. Incorpo-rating the journals’ aims and scopes, our model shows an exciting result by getting 0.5194, 0.8112, 0.8866, 0.9496 respective to Top 1, 3, 5, and 10. We provide the implementation and datasets for further reference at https://github.com/hduc-le/SimCPSR .
{"title":"SimCPSR: Simple Contrastive Learning for Paper Submission Recommendation System","authors":"Duc H. Le, T. T. Doan, S. T. Huynh, Binh T. Nguyen","doi":"10.48550/arXiv.2205.05940","DOIUrl":"https://doi.org/10.48550/arXiv.2205.05940","url":null,"abstract":". The recommendation system plays a vital role in many areas, especially academic fields, to support researchers in submitting and increasing the acceptance of their work through the conference or journal selection process. This study proposes a transformer-based model using transfer learning as an efficient approach for the paper submission recommendation system. By combining essential information (such as the title, the abstract, and the list of keywords) with the aims & scopes of journals, the model can recommend the Top K journals that maximize the acceptance of the paper. Our model had developed through two states: (i) Fine-tuning the pre-trained language model (LM) with a simple contrastive learning framework. We utilized a simple supervised contrastive objective to fine-tune all parameters, encouraging the LM to learn the document representation effectively. (ii) The fine-tuned LM was then trained on different combinations of the features for the downstream task. This study suggests a more advanced method for enhancing the efficiency of the paper submission recommendation system compared to previous approaches when we respectively achieve 0.5173, 0.8097, 0.8862, 0.9496 for Top 1, 3, 5, 10 accuracies on the test set for combining the title, abstract, and keywords as input features. Incorpo-rating the journals’ aims and scopes, our model shows an exciting result by getting 0.5194, 0.8112, 0.8866, 0.9496 respective to Top 1, 3, 5, and 10. We provide the implementation and datasets for further reference at https://github.com/hduc-le/SimCPSR .","PeriodicalId":397879,"journal":{"name":"Asian Conference on Intelligent Information and Database Systems","volume":"551 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122117761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}