带蜂窝腹板的钢板梁性能研究

H. Ammash, Noora N. Shaffaf
{"title":"带蜂窝腹板的钢板梁性能研究","authors":"H. Ammash, Noora N. Shaffaf","doi":"10.22630/srees.4743","DOIUrl":null,"url":null,"abstract":"Based on the experimental test results of the authors, this investigation is concerned with the finite element analysis to examine and compare the load values and failure modes of the authors’ results. This research was conducted using the Abaqus software. The experimental work included the fabrication of twelve plate girders with honeycomb and flat web plate corrugation patterns, which were then tested under a single concentrated load at the midspan. According to the corrugation dimension or outer honeycomb web thickness, the honeycomb steel plate web girder is divided into three groups (60 mm, 80 mm and 100 mm). The specimens also involved plate girders with a flat web. The specimens were created with three lengths (600 mm, 1,200 mm and 1,800 mm). The Abaqus software was used in finite element models to simulate the concentrated load. The numerical results demonstrated that the 60 mm thick honeycomb web provides a greater load-bearing capacity and shear strength than other girders. The 20 mm honeycomb corrugation on the steel plate girder indicates the increased and improved shear resistance. The conclusion was that as the width of the corrugation increased, so did the steel web’s ultimate load and shear strength, resulting in a positive relationship between the critical shear buckling load of the web and the moment of inertia at the strong axis. When the dimension of the corrugation increases, the moment of inertia of the Y axis (Iy) decreases; thus, the plate girder will fail with a less critical buckling load (Pcr). Also, it can be concluded that as the steel plate thickness of the honeycomb web increases, the shear resistance increases as well. However, the spacing between the intermediate stiffener or the horizontal spacing of the web panel can enhance the shear resistance of honeycomb web girder if it was decreased due to increasing the action of tension field force that resists the diagonal tension developed at the web panel by the applied midspan concentrated force.","PeriodicalId":201498,"journal":{"name":"Scientific Review Engineering and Environmental Sciences (SREES)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior study of the steel plate girder with a cellular honeycomb web\",\"authors\":\"H. Ammash, Noora N. Shaffaf\",\"doi\":\"10.22630/srees.4743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the experimental test results of the authors, this investigation is concerned with the finite element analysis to examine and compare the load values and failure modes of the authors’ results. This research was conducted using the Abaqus software. The experimental work included the fabrication of twelve plate girders with honeycomb and flat web plate corrugation patterns, which were then tested under a single concentrated load at the midspan. According to the corrugation dimension or outer honeycomb web thickness, the honeycomb steel plate web girder is divided into three groups (60 mm, 80 mm and 100 mm). The specimens also involved plate girders with a flat web. The specimens were created with three lengths (600 mm, 1,200 mm and 1,800 mm). The Abaqus software was used in finite element models to simulate the concentrated load. The numerical results demonstrated that the 60 mm thick honeycomb web provides a greater load-bearing capacity and shear strength than other girders. The 20 mm honeycomb corrugation on the steel plate girder indicates the increased and improved shear resistance. The conclusion was that as the width of the corrugation increased, so did the steel web’s ultimate load and shear strength, resulting in a positive relationship between the critical shear buckling load of the web and the moment of inertia at the strong axis. When the dimension of the corrugation increases, the moment of inertia of the Y axis (Iy) decreases; thus, the plate girder will fail with a less critical buckling load (Pcr). Also, it can be concluded that as the steel plate thickness of the honeycomb web increases, the shear resistance increases as well. However, the spacing between the intermediate stiffener or the horizontal spacing of the web panel can enhance the shear resistance of honeycomb web girder if it was decreased due to increasing the action of tension field force that resists the diagonal tension developed at the web panel by the applied midspan concentrated force.\",\"PeriodicalId\":201498,\"journal\":{\"name\":\"Scientific Review Engineering and Environmental Sciences (SREES)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Review Engineering and Environmental Sciences (SREES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22630/srees.4743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Review Engineering and Environmental Sciences (SREES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/srees.4743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究在作者的试验试验结果的基础上,进行了有限元分析,对作者结果的载荷值和破坏模式进行了检验和比较。本研究采用Abaqus软件进行。试验工作包括制作了12根蜂窝板和平腹板波纹型板梁,并在跨中集中荷载下进行了试验。根据波纹尺寸或外蜂窝腹板厚度,将蜂窝钢板腹板主梁分为三组(60mm、80mm和100mm)。这些标本还包括带有平腹板的板梁。制作了三种长度的标本(600毫米,1200毫米和1800毫米)。有限元模型采用Abaqus软件进行集中荷载模拟。数值计算结果表明,60mm厚蜂窝腹板比其他梁具有更高的承载能力和抗剪强度。在钢板梁上形成20 mm的蜂窝波纹,表明其抗剪能力得到增强和改善。结果表明,随着波纹宽度的增大,腹板的极限载荷和抗剪强度增大,腹板的临界剪切屈曲载荷与强轴处的转动惯量呈正相关。当波纹尺寸增大时,Y轴转动惯量(Y)减小;因此,板梁将以较小的临界屈曲荷载(Pcr)破坏。同时,随着蜂窝腹板钢板厚度的增加,蜂窝腹板的抗剪能力也随之增加。而中间加劲肋间距或腹板水平间距的减小,可以通过增加张力场力的作用来抵抗跨中集中力在腹板处形成的斜向张力,从而提高蜂窝腹板梁的抗剪能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Behavior study of the steel plate girder with a cellular honeycomb web
Based on the experimental test results of the authors, this investigation is concerned with the finite element analysis to examine and compare the load values and failure modes of the authors’ results. This research was conducted using the Abaqus software. The experimental work included the fabrication of twelve plate girders with honeycomb and flat web plate corrugation patterns, which were then tested under a single concentrated load at the midspan. According to the corrugation dimension or outer honeycomb web thickness, the honeycomb steel plate web girder is divided into three groups (60 mm, 80 mm and 100 mm). The specimens also involved plate girders with a flat web. The specimens were created with three lengths (600 mm, 1,200 mm and 1,800 mm). The Abaqus software was used in finite element models to simulate the concentrated load. The numerical results demonstrated that the 60 mm thick honeycomb web provides a greater load-bearing capacity and shear strength than other girders. The 20 mm honeycomb corrugation on the steel plate girder indicates the increased and improved shear resistance. The conclusion was that as the width of the corrugation increased, so did the steel web’s ultimate load and shear strength, resulting in a positive relationship between the critical shear buckling load of the web and the moment of inertia at the strong axis. When the dimension of the corrugation increases, the moment of inertia of the Y axis (Iy) decreases; thus, the plate girder will fail with a less critical buckling load (Pcr). Also, it can be concluded that as the steel plate thickness of the honeycomb web increases, the shear resistance increases as well. However, the spacing between the intermediate stiffener or the horizontal spacing of the web panel can enhance the shear resistance of honeycomb web girder if it was decreased due to increasing the action of tension field force that resists the diagonal tension developed at the web panel by the applied midspan concentrated force.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The effect of pre-vulcanized latex usage on Marshall characteristics and stiffness modulus in hot mix asphalt wearing course (AC-WC) mixtures Ash from gasification of poultry feathers for heavy metal immobilization under assisted phytostabilization in soils Public-private partnerships scheme of pioneer train case study in South Sumatera area Study of the influence of commercial activities on waste formation in Ukraine in the context of sustainable developmentment Investigation on strength and ductility of confined geopolymer concrete subjected to axial loads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1