90°射孔分段射孔水平井筒压降数值与实验结果比较

M. Mustafa, Q. Rishack, M. Abdulwahid
{"title":"90°射孔分段射孔水平井筒压降数值与实验结果比较","authors":"M. Mustafa, Q. Rishack, M. Abdulwahid","doi":"10.33971/bjes.23.1.15","DOIUrl":null,"url":null,"abstract":"This paper presented experimental and numerical studies to investigate pressure drop in perforation horizontal wellbore with a 90° phasing and 20 spm perforation density. The experimental apparatus has been constructed to calculate the static pressure drop and calculate the exit velocity in the horizontal pipe after mixing the axial flow with the radial flow through the perforations in the wellbore. The specifications of the wellbore used were the inner diameter is 44 mm, length is 2 m, and perforation diameter is 4 mm. For this objective, a simulation model was created in the wellbore using the ANSYS Fluent simulation software by using the standard k-ε model and applied to the (CFD) by changing the axial flow from (40-160) lit/min and constant inflow through perforations from range (0 - 80) lit/min. According to the study's findings, the increase in the radial flow through the perforations increases the total flow rate ratio and the total pressure drop and vice versa. In addition, an increase in the axial flow mixed with radial flow increases the total pressure drop, friction factor, and a decrease in productivity index. Furthermore, the percentage error of the total pressure drop between the numerical and experimental results in test 4 is about 3.83 %. It was found that the numerical and experimental results represented a good agreement about the study of the flow-through perforations at 90° angle in terms of pressure drop and productivity index, etc.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison Between Numerical and an Experimental Results of Pressure Drop in a Perforated Horizontal Wellbore with a 90° Perforations Phasing\",\"authors\":\"M. Mustafa, Q. Rishack, M. Abdulwahid\",\"doi\":\"10.33971/bjes.23.1.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presented experimental and numerical studies to investigate pressure drop in perforation horizontal wellbore with a 90° phasing and 20 spm perforation density. The experimental apparatus has been constructed to calculate the static pressure drop and calculate the exit velocity in the horizontal pipe after mixing the axial flow with the radial flow through the perforations in the wellbore. The specifications of the wellbore used were the inner diameter is 44 mm, length is 2 m, and perforation diameter is 4 mm. For this objective, a simulation model was created in the wellbore using the ANSYS Fluent simulation software by using the standard k-ε model and applied to the (CFD) by changing the axial flow from (40-160) lit/min and constant inflow through perforations from range (0 - 80) lit/min. According to the study's findings, the increase in the radial flow through the perforations increases the total flow rate ratio and the total pressure drop and vice versa. In addition, an increase in the axial flow mixed with radial flow increases the total pressure drop, friction factor, and a decrease in productivity index. Furthermore, the percentage error of the total pressure drop between the numerical and experimental results in test 4 is about 3.83 %. It was found that the numerical and experimental results represented a good agreement about the study of the flow-through perforations at 90° angle in terms of pressure drop and productivity index, etc.\",\"PeriodicalId\":150774,\"journal\":{\"name\":\"Basrah journal for engineering science\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basrah journal for engineering science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33971/bjes.23.1.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basrah journal for engineering science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33971/bjes.23.1.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对90°相位、20 spm射孔密度下水平井筒的压降进行了实验和数值研究。建立了计算轴向流与径向流混合穿过井筒射孔后水平管内静压降和出口速度的实验装置。使用的井眼规格为内径44 mm,长度2 m,射孔直径4 mm。为此,利用ANSYS Fluent仿真软件,采用标准k-ε模型,在井筒中建立仿真模型,并将轴向流量从(40-160)lit/min和射孔恒定流入范围(0 - 80)lit/min,应用于CFD。根据研究结果,通过射孔的径向流量的增加会增加总流量比和总压降,反之亦然。此外,轴向流与径向流混合的增加增加了总压降和摩擦系数,并降低了产能指数。试验4的总压降数值与实验结果的误差百分比约为3.83%。结果表明,在压降和产能指数等方面,数值计算结果与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison Between Numerical and an Experimental Results of Pressure Drop in a Perforated Horizontal Wellbore with a 90° Perforations Phasing
This paper presented experimental and numerical studies to investigate pressure drop in perforation horizontal wellbore with a 90° phasing and 20 spm perforation density. The experimental apparatus has been constructed to calculate the static pressure drop and calculate the exit velocity in the horizontal pipe after mixing the axial flow with the radial flow through the perforations in the wellbore. The specifications of the wellbore used were the inner diameter is 44 mm, length is 2 m, and perforation diameter is 4 mm. For this objective, a simulation model was created in the wellbore using the ANSYS Fluent simulation software by using the standard k-ε model and applied to the (CFD) by changing the axial flow from (40-160) lit/min and constant inflow through perforations from range (0 - 80) lit/min. According to the study's findings, the increase in the radial flow through the perforations increases the total flow rate ratio and the total pressure drop and vice versa. In addition, an increase in the axial flow mixed with radial flow increases the total pressure drop, friction factor, and a decrease in productivity index. Furthermore, the percentage error of the total pressure drop between the numerical and experimental results in test 4 is about 3.83 %. It was found that the numerical and experimental results represented a good agreement about the study of the flow-through perforations at 90° angle in terms of pressure drop and productivity index, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impact of Façade Design on Visual Pollution Case study: Peshawa-Qazi Street (100 m) in Erbil A Review of Intelligent Techniques Based Speed Control of Brushless DC Motor (BLDC) Design and Implementation of Smart Petrol Station A Numerical Study of Blade Geometry Effects in a Vertical-Axes Wind Turbines Review on Energy Harvesting from Wind-Induced Column Vibrations: Theories, Mechanisms, and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1