Semyoung Oh, Hanjun Lee, Jooho Jung, Gil-Young Lee
{"title":"一种新型宽带小型化元件频率选择面","authors":"Semyoung Oh, Hanjun Lee, Jooho Jung, Gil-Young Lee","doi":"10.1155/2014/857582","DOIUrl":null,"url":null,"abstract":"This letter presents a novel wideband miniaturized-element frequency selective surface (MEFSS). The simulation and measurement results show that the bandwidth of the proposed MEFSS is remarkably enhanced compared to that of an original second-order MEFSS while its size and total thickness are still small. A parametric study is also conducted to understand the operating mechanism of the proposed structure. The phenomenon observed in the parametric study is explained with an equivalent circuit model.","PeriodicalId":232251,"journal":{"name":"International Journal of Microwave Science and Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Novel Wideband Miniaturized-Element Frequency Selective Surface\",\"authors\":\"Semyoung Oh, Hanjun Lee, Jooho Jung, Gil-Young Lee\",\"doi\":\"10.1155/2014/857582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a novel wideband miniaturized-element frequency selective surface (MEFSS). The simulation and measurement results show that the bandwidth of the proposed MEFSS is remarkably enhanced compared to that of an original second-order MEFSS while its size and total thickness are still small. A parametric study is also conducted to understand the operating mechanism of the proposed structure. The phenomenon observed in the parametric study is explained with an equivalent circuit model.\",\"PeriodicalId\":232251,\"journal\":{\"name\":\"International Journal of Microwave Science and Technology\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/857582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/857582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Wideband Miniaturized-Element Frequency Selective Surface
This letter presents a novel wideband miniaturized-element frequency selective surface (MEFSS). The simulation and measurement results show that the bandwidth of the proposed MEFSS is remarkably enhanced compared to that of an original second-order MEFSS while its size and total thickness are still small. A parametric study is also conducted to understand the operating mechanism of the proposed structure. The phenomenon observed in the parametric study is explained with an equivalent circuit model.