时域特征与收缩期激活神经网络在声带病理诊断中的应用

M. Paulraj, S. Yaacob, M. Hariharan
{"title":"时域特征与收缩期激活神经网络在声带病理诊断中的应用","authors":"M. Paulraj, S. Yaacob, M. Hariharan","doi":"10.1109/CSPA.2009.5069181","DOIUrl":null,"url":null,"abstract":"Due to the nature of job, unhealthy social habits and voice abuse, the people are subjected to the risk of voice problems. It is well known that most of vocal fold pathologies cause changes in the acoustic voice signal. Therefore, the voice signal can be a useful tool to diagnose them. Acoustic voice analysis can be used to characterize the pathological voices. This paper presents the detection of vocal fold pathology with the aid of the speech signal recorded from the patients. Time-domain features are proposed and extracted to detect the vocal fold pathology. The main advantages of this method are less computation time, possibility of real-time system development and it requires no transformation techniques (frequency transformation or time-frequency transformation). In order to test the effectiveness and reliability of the proposed time-domain features, a simple neural network model with systole activation function is proposed and trained by conventional back propagation (BP) algorithm. The classification accuracy of the proposed systole activated neural network is comparable with the results of neural network model with sigmoidal activation function. The simulation results show that the proposed systole activated neural network reduces the time taken for training the neural network.","PeriodicalId":338469,"journal":{"name":"2009 5th International Colloquium on Signal Processing & Its Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Diagnosis of vocal fold pathology using time-domain features and systole activated neural network\",\"authors\":\"M. Paulraj, S. Yaacob, M. Hariharan\",\"doi\":\"10.1109/CSPA.2009.5069181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the nature of job, unhealthy social habits and voice abuse, the people are subjected to the risk of voice problems. It is well known that most of vocal fold pathologies cause changes in the acoustic voice signal. Therefore, the voice signal can be a useful tool to diagnose them. Acoustic voice analysis can be used to characterize the pathological voices. This paper presents the detection of vocal fold pathology with the aid of the speech signal recorded from the patients. Time-domain features are proposed and extracted to detect the vocal fold pathology. The main advantages of this method are less computation time, possibility of real-time system development and it requires no transformation techniques (frequency transformation or time-frequency transformation). In order to test the effectiveness and reliability of the proposed time-domain features, a simple neural network model with systole activation function is proposed and trained by conventional back propagation (BP) algorithm. The classification accuracy of the proposed systole activated neural network is comparable with the results of neural network model with sigmoidal activation function. The simulation results show that the proposed systole activated neural network reduces the time taken for training the neural network.\",\"PeriodicalId\":338469,\"journal\":{\"name\":\"2009 5th International Colloquium on Signal Processing & Its Applications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 5th International Colloquium on Signal Processing & Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPA.2009.5069181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 5th International Colloquium on Signal Processing & Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2009.5069181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于工作性质、不健康的社会习惯和滥用声音,人们面临着声音问题的风险。众所周知,大多数声带病变都会引起声音信号的改变。因此,语音信号可以作为一种有用的诊断工具。声学语音分析可以用来表征病理语音。本文介绍了利用患者语音信号进行声带病理检测的方法。提出并提取时域特征来检测声带病理。该方法的主要优点是计算时间短,可以实时开发系统,并且不需要变换技术(频率变换或时频变换)。为了验证所提出的时域特征的有效性和可靠性,提出了一个简单的具有收缩激活函数的神经网络模型,并用传统的反向传播(BP)算法进行训练。所提出的收缩激活神经网络的分类精度与具有s型激活函数的神经网络模型的分类精度相当。仿真结果表明,所提出的收缩激活神经网络减少了神经网络的训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diagnosis of vocal fold pathology using time-domain features and systole activated neural network
Due to the nature of job, unhealthy social habits and voice abuse, the people are subjected to the risk of voice problems. It is well known that most of vocal fold pathologies cause changes in the acoustic voice signal. Therefore, the voice signal can be a useful tool to diagnose them. Acoustic voice analysis can be used to characterize the pathological voices. This paper presents the detection of vocal fold pathology with the aid of the speech signal recorded from the patients. Time-domain features are proposed and extracted to detect the vocal fold pathology. The main advantages of this method are less computation time, possibility of real-time system development and it requires no transformation techniques (frequency transformation or time-frequency transformation). In order to test the effectiveness and reliability of the proposed time-domain features, a simple neural network model with systole activation function is proposed and trained by conventional back propagation (BP) algorithm. The classification accuracy of the proposed systole activated neural network is comparable with the results of neural network model with sigmoidal activation function. The simulation results show that the proposed systole activated neural network reduces the time taken for training the neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dual Material Gate Silicon on Insulator (DMGSOI) - Design impact on linearity Application of PID controller in controlling refrigerator temperature Housekeeping robot: From concept to design Development of an active RFID communicator for automatic control applications Design of a vision system as a coordinate measurement sensor in a 2D gantry crane control system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1