基于典型相关分析的面部表情识别特征提取

C. O. Sakar, Olcay Kursun, Ali Karaali, Ç. Erdem
{"title":"基于典型相关分析的面部表情识别特征提取","authors":"C. O. Sakar, Olcay Kursun, Ali Karaali, Ç. Erdem","doi":"10.1109/SIU.2012.6204837","DOIUrl":null,"url":null,"abstract":"Although several methods have been proposed for fusing different image representations obtained by different preprocessing methods for emotion recognition from the facial expression in a given image, the dependencies and relations among them have not been much investigated. In this study, it has been shown that covariates obtained by Canonical Correlation Analysis (CCA) that extracts relations between different representations have high predictive power for emotion recognition. As high prediction accuracy can be achieved using a small number of features extracted by it, CCA is considered to be a good dimensionality reduction method. For our simulations, we used the CK+ database and showed that covariates obtained from difference-images and geometric-features representations have high prediction accuracy.","PeriodicalId":256154,"journal":{"name":"2012 20th Signal Processing and Communications Applications Conference (SIU)","volume":"342 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Feature extraction for facial expression recognition by canonical correlation analysis\",\"authors\":\"C. O. Sakar, Olcay Kursun, Ali Karaali, Ç. Erdem\",\"doi\":\"10.1109/SIU.2012.6204837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although several methods have been proposed for fusing different image representations obtained by different preprocessing methods for emotion recognition from the facial expression in a given image, the dependencies and relations among them have not been much investigated. In this study, it has been shown that covariates obtained by Canonical Correlation Analysis (CCA) that extracts relations between different representations have high predictive power for emotion recognition. As high prediction accuracy can be achieved using a small number of features extracted by it, CCA is considered to be a good dimensionality reduction method. For our simulations, we used the CK+ database and showed that covariates obtained from difference-images and geometric-features representations have high prediction accuracy.\",\"PeriodicalId\":256154,\"journal\":{\"name\":\"2012 20th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"342 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 20th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2012.6204837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2012.6204837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

虽然已经提出了几种方法来融合由不同预处理方法获得的不同图像表示,以用于给定图像中的面部表情识别,但它们之间的依赖关系和关系尚未得到太多的研究。本研究表明,典型相关分析(Canonical Correlation Analysis, CCA)所获得的协变量提取了不同表征之间的关系,对情绪识别具有较高的预测能力。由于CCA提取的特征数量少,可以达到较高的预测精度,因此被认为是一种很好的降维方法。在我们的模拟中,我们使用了CK+数据库,结果表明,从差分图像和几何特征表示中获得的协变量具有很高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature extraction for facial expression recognition by canonical correlation analysis
Although several methods have been proposed for fusing different image representations obtained by different preprocessing methods for emotion recognition from the facial expression in a given image, the dependencies and relations among them have not been much investigated. In this study, it has been shown that covariates obtained by Canonical Correlation Analysis (CCA) that extracts relations between different representations have high predictive power for emotion recognition. As high prediction accuracy can be achieved using a small number of features extracted by it, CCA is considered to be a good dimensionality reduction method. For our simulations, we used the CK+ database and showed that covariates obtained from difference-images and geometric-features representations have high prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real time FPGA implementation of Full Search video stabilization method MIMO communication theory, algorithms, and prototyping Multiview scene matching using local features and invariant geometric constraints Pulse position modulation based optical spatial modulation over atmospheric turbulence channels On the importance of application based scheduling for femtocell access points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1