{"title":"流形学习的并行投影","authors":"H. Strange, R. Zwiggelaar","doi":"10.1109/ICMLA.2010.54","DOIUrl":null,"url":null,"abstract":"Manifold learning is a widely used statistical tool which reduces the dimensionality of a data set while aiming to maintain both local and global properties of the data. We present a novel manifold learning technique which aligns local hyper planes to build a global representation of the data. A Minimum Spanning Tree provides the skeleton needed to traverse the manifold so that the local hyper planes can be merged using parallel projections to build a global hyper plane of the data. We show state of the art results when compared against existing manifold learning algorithm on both artificial and real world image data.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallel Projections for Manifold Learning\",\"authors\":\"H. Strange, R. Zwiggelaar\",\"doi\":\"10.1109/ICMLA.2010.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manifold learning is a widely used statistical tool which reduces the dimensionality of a data set while aiming to maintain both local and global properties of the data. We present a novel manifold learning technique which aligns local hyper planes to build a global representation of the data. A Minimum Spanning Tree provides the skeleton needed to traverse the manifold so that the local hyper planes can be merged using parallel projections to build a global hyper plane of the data. We show state of the art results when compared against existing manifold learning algorithm on both artificial and real world image data.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Manifold learning is a widely used statistical tool which reduces the dimensionality of a data set while aiming to maintain both local and global properties of the data. We present a novel manifold learning technique which aligns local hyper planes to build a global representation of the data. A Minimum Spanning Tree provides the skeleton needed to traverse the manifold so that the local hyper planes can be merged using parallel projections to build a global hyper plane of the data. We show state of the art results when compared against existing manifold learning algorithm on both artificial and real world image data.