{"title":"带有改进电压保持器的多米诺门","authors":"Jinhui Wang, Wu-chen Wu, Na Gong, L. Hou","doi":"10.1109/ISQED.2010.5450538","DOIUrl":null,"url":null,"abstract":"Using both the modified supply voltage and body voltage, an optimized keeper technique is presented in this paper to tradeoff the performance of domino OR gates. The simulation results show that the novel technique can highly improve power/speed efficiency and robustness to noise. In addition, because of employment of body biased voltage, the optimized keeper technique enables to minimize effect of the strong process parameter variation.","PeriodicalId":369046,"journal":{"name":"2010 11th International Symposium on Quality Electronic Design (ISQED)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Domino gate with modified voltage keeper\",\"authors\":\"Jinhui Wang, Wu-chen Wu, Na Gong, L. Hou\",\"doi\":\"10.1109/ISQED.2010.5450538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using both the modified supply voltage and body voltage, an optimized keeper technique is presented in this paper to tradeoff the performance of domino OR gates. The simulation results show that the novel technique can highly improve power/speed efficiency and robustness to noise. In addition, because of employment of body biased voltage, the optimized keeper technique enables to minimize effect of the strong process parameter variation.\",\"PeriodicalId\":369046,\"journal\":{\"name\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2010.5450538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2010.5450538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using both the modified supply voltage and body voltage, an optimized keeper technique is presented in this paper to tradeoff the performance of domino OR gates. The simulation results show that the novel technique can highly improve power/speed efficiency and robustness to noise. In addition, because of employment of body biased voltage, the optimized keeper technique enables to minimize effect of the strong process parameter variation.