{"title":"基于对抗生成距离的鲁棒域外检测分类器","authors":"Zhiyuan Zeng, Hong Xu, Keqing He, Yuanmeng Yan, Sihong Liu, Zijun Liu, Weiran Xu","doi":"10.1109/ICASSP39728.2021.9413908","DOIUrl":null,"url":null,"abstract":"Detecting out-of-domain (OOD) intents is critical in a task-oriented dialog system. Existing methods rely heavily on extensive manually labeled OOD samples and lack robustness. In this paper, we propose an efficient adversarial attack mechanism to augment hard OOD samples and design a novel generative distance-based classifier to detect OOD samples instead of a traditional threshold-based discriminator classifier. Experiments on two public benchmark datasets show that our method can consistently outperform the baselines with a statistically significant margin.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Adversarial Generative Distance-Based Classifier for Robust Out-of-Domain Detection\",\"authors\":\"Zhiyuan Zeng, Hong Xu, Keqing He, Yuanmeng Yan, Sihong Liu, Zijun Liu, Weiran Xu\",\"doi\":\"10.1109/ICASSP39728.2021.9413908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting out-of-domain (OOD) intents is critical in a task-oriented dialog system. Existing methods rely heavily on extensive manually labeled OOD samples and lack robustness. In this paper, we propose an efficient adversarial attack mechanism to augment hard OOD samples and design a novel generative distance-based classifier to detect OOD samples instead of a traditional threshold-based discriminator classifier. Experiments on two public benchmark datasets show that our method can consistently outperform the baselines with a statistically significant margin.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9413908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9413908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adversarial Generative Distance-Based Classifier for Robust Out-of-Domain Detection
Detecting out-of-domain (OOD) intents is critical in a task-oriented dialog system. Existing methods rely heavily on extensive manually labeled OOD samples and lack robustness. In this paper, we propose an efficient adversarial attack mechanism to augment hard OOD samples and design a novel generative distance-based classifier to detect OOD samples instead of a traditional threshold-based discriminator classifier. Experiments on two public benchmark datasets show that our method can consistently outperform the baselines with a statistically significant margin.